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Chapter 11

Supersymmetry in Elementary Particle Physics

Michael E. Peskin

Stanford Linear Accelerator Center, Stanford University
2575 Sand Hill Road, Menlo Park, California 94025 USA

These lectures give a general introduction to supersymmetry, empha-
sizing its application to models of elementary particle physics at the
100 GeV energy scale. I discuss the following topics: the construction of
supersymmetric Lagrangians with scalars, fermions, and gauge bosons,
the structure and mass spectrum of the Minimal Supersymmetric Stan-
dard Model (MSSM), the measurement of the parameters of the MSSM
at high-energy colliders, and the solutions that the MSSM gives to the
problems of electroweak symmetry breaking and dark matter.

11.1. Introduction

11.1.1. Overview

It is an exciting time now in high-energy physics. For many years, ever
since the Standard Model was established in the late 1970’s, the next log-
ical question in the search for the basic laws of physics has been that of
the mechanism by which the weak interaction gauge symmetry is sponta-
neously broken. This seemed at the time the one important gap that kept
the Standard Model from being a complete theory of the strong, weak,and
electromagnetic interactions [1–3]. Thirty years later, after many precision
experiments at high-energy e+e− and hadron colliders, this is still our sit-
uation. In the meantime, another important puzzle has been recognized,
the fact that 80% of the mass in the universe is composed of ‘dark mat-
ter’, a particle species not included in the Standard Model. Both problems
are likely to be solved by new fundamental interactions operating in the
energy range of a few hundred GeV. Up to now, there is no evidence from
particle physics for such new interactions. But, in the next few years, this
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situation should change dramatically. Beginning in 2008, the CERN Large
Hadron Collider (LHC) should give us access to physics at energies well
above 1 TeV and thus should probe the energy region responsible for elec-
troweak symmetry breaking. Over a longer term, we can look forward to
precision experiments in e+e− annihilation in this same energy region at
the proposed International Linear Collider (ILC).

Given this expectation, it is important for all students of elementary
particle physics to form concrete ideas of what new phenomena we might
find as we explore this new energy region. Of course, we have no way of
knowing exactly what we will find there. But this makes it all the more
important to study the alternative theories that have been put forward and
to understand their problems and virtues.

Many different models of new physics relevant to electroweak symmetry
breaking are being discussed at this TASI school. Among these, supersym-
metry has pride of place. Supersymmetry (or SUSY) provides an explicit
realization of all of the aspects of new physics expected in the hundred
GeV energy region. Because SUSY requires only weak interactions to build
a realistic theory, it is possible in a model with SUSY to carry out ex-
plicit calculations and find the answers that the model gives to all relevant
phenomenological questions.

In these lectures, I will give an introduction to supersymmetry as a con-
text for building models of new physics associated with electroweak symme-
try breaking. Here is an outline of the material: In Section 2, I will develop
appropriate notation and then construct supersymmetric Lagrangians for
scalar, spinor, and vector fields. In Section 3, I will define the canonical
phenomenological model of supersymmetry, the Minimal Supersymmetric
Standard Model (MSSM). I will discuss the quantum numbers of new par-
ticles in the MSSM and the connection of the MSSM to the idea of grand
unification.

The remaining sections of these lectures will map out the phenomenol-
ogy of the new particles and interactions expected in models of supersym-
metry. I caution you that I will draw only those parts of the map that
cover the simplest and most well-studied class of models. Supersymmetry
has an enormous parameter space which contains many different scenarios
for particle physics, more than I have room to cover here. I will at least try
to indicate the possible branches in the path and give references that will
help you follow some of the alternative routes.

With this restriction, the remaining sections will proceed as follows: In
Section 4, I will compute the mass spectrum of the MSSM from its param-
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eters. I will also discuss the parameters of the MSSM that characterize
supersymmetry breaking. In Section 5, I will describe how the MSSM pa-
rameters will be measured at the LHC and the ILC. Finally, Section 6 will
discuss the answers that supersymmetry gives to the two major questions
posed at the beginning of this discussion, the origin of electroweak symme-
try breaking, and the origin of cosmic dark matter.

Although I hope that these lectures will be useful to students in studying
supersymmetry, there are many other excellent treatments of the subject
available. A highly recommended introduction to SUSY is the ‘Supersym-
metry Primer’ by Steve Martin [6]. An excellent presentation of the for-
malism of supersymmetry is given in the texbook of Wess and Bagger [7].
Supersymmetry has been reviewed at previous TASI schools by Bagger [8],
Lykken [9], and Kane [10], among others. Very recently, three textbooks of
phenomenological supersymmetry have appeared, by Drees, Godbole, and
Roy [11], Binetruy [12], and Baer and Tata [13]. A fourth textbook, by
Dreiner, Haber, and Martin [14], is expected soon.

It would be wonderful if all of these articles and books used the same
conventions, but that is too much to expect. In these lectures, I will use
my own, somewhat ideosyncratic conventions. These are explained in Sec-
tion 2.1. Where possible, within the philosophy of that section, I have
chosen conventions that agree with those of Martin’s primer [6].

11.1.2. Motivation and Structure of Supersymmetry

If we propose supersymmetry as a model of electroweak symmetry
breaking, we might begin by asking: What is the problem of electroweak
symmetry breaking, and what are the alternatives for solving it?

Electroweak symmetry is spontaneously broken in the minimal form
of the Standard Model, which I will refer to as the MSM. However, the
explanation that the MSM gives for this phenomenon is not satisfactory.
The sole source of symmetry breaking is a single elementary Higgs boson
field. All mass of quarks, leptons, and gauge bosons arise from the couplings
of those particles to the Higgs field.

To generate symmetry breaking, we postulate a potential for the Higgs
field

V = µ2|ϕ|2 + λ|ϕ|4 , (11.1)

shown in Fig. 11.1. The assumption that µ2 < 0 is the complete explanation
for electroweak symmetry breaking in the MSM. Since µ is a renormaliz-
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able coupling of this theory, the value of µ cannot be computed from first
principles, and even its sign cannot be predicted.

Fig. 11.1.: The Standard Model Higgs potential (11.1).

In fact, this explanation has an even worse feature. The parameter
µ2 receives large additive radiative corrections from loop diagrams. For
example, the two diagrams shown in Fig. 11.2 are ultraviolet divergent.
Supplying a momentum cutoff Λ, the two diagrams contribute

µ2 = µ2
bare +

λ

8π2
Λ2 − 3y2

t

8π2
Λ2 + · · · (11.2)

If we view the MSM as an effective theory, Λ should be taken to be the
largest momentum scale at which this theory is still valid. The presence
of large additive corrections implies that the criterion µ2 < 0 is not a
simple condition on the underlying parameters of the effective theory. The
radiative corrections can easily change the sign of µ2. Further, if we insist
that the MSM has a large range of validity, the corrections become much
larger than the desired result. To obtain the Higgs field vacuum expectation
value required for the weak interactions, |µ| should be about 100 GeV. If
we insist at the same time that the MSM is valid up to the Planck scale,
Λ ∼ 1019 GeV, the formula (11.2) requires a cancellation between the bare
value of µ and the radiative corrections in the first 36 decimal places. This
problem has its own name, the ‘gauge hierarchy problem’. But, to my mind,
the absence of a logical explantion for electroweak symmetry breaking in
the MSM is already problem enough.

How could we solve this problem? There are two different strategies.
One is to look for new strong-couplings dynamics at an energy scale of 1 TeV
or below. Then the Higgs field could be composite and its potential could be
the result, for example, of pair condensation of fermion constituents. Higgs
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Fig. 11.2.: Two Standard Model diagrams that give divergent corrections to the
Higgs mass parameter µ2.

actually proposed that his field was a phenomenological description of a
fermion pair condensation mechanism similar to that in superconductiv-
ity [4]. Sometime later, Susskind [2] and Weinberg [3] proposed an explicit
model of electroweak symmetry breaking by new strong interactions, called
‘technicolor’.

Today, this approach is disfavored. Technicolor typically leads to flavor-
changing neutral currents at an observable level, and also typically conflicts
with the accurate agreement of precision electroweak theory with experi-
ment. Specific models do evade these difficulties, but they are highly con-
strained [5].

The alternative is to postulate that the electroweak symmetry is broken
by a weakly-coupled Higgs field, but that this field is part of a model in
which the Higgs potential is computable. In particular, the Higgs mass
term µ2|ϕ|2 should be generated by well-defined physics within the model.
A prerequisite for this is that the µ2 term not receive additive radiative
corrections. This requires that, at high energy, the appearance of a nonzero
µ2 in the Lagrangian should be forbidden by a symmetry of the theory.

There are three ways to arrange a symmetry that forbids the term
µ2|ϕ|2. We can postulate a symmetry that shifts ϕ

δϕ = εv . (11.3)

We can postulate a symmetry that connects ϕ to a gauge field, whose mass
can then forbidden by gauge symmetry

δϕ = ε ·A . (11.4)

We can postulate a symmetry that connects ϕ to a fermion field, whose
mass can then be forbidden by a chiral symmetry.

δϕ = ε · ψ . (11.5)

The options (11.3) and (11.4) lead, respectively, to ‘little Higgs’ models [15–
17] and to models with extra space dimensions [18,19]. The third option
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leads to supersymmetry. This is the route we will now follow.
The symmetry (11.5) looks quite innocent, but it is not. In quantum

theory, a symmetry that links a boson with a fermion is generated by a
conserved charge Qα that carries spin-1/2

[Qα, ϕ] = ψα , [Qα,H] = 0 . (11.6)

Such a Qα implies the existence of a conserved 4-vector charge Rm defined
by

{Qα, Q
†
β} = 2γm

αβRm (11.7)

(It may not be obvious to you that there is no Lorentz scalar component in
this anticommutator, but I will show this in Section 2.1.) The charge Rm

is conserved, because both Q and Q† commute with H. It is nonzero, as we
can see by taking the expectation value of (11.7) in any state and setting
α = β

〈A| {Qα, Q
†
α} |A〉 = 〈A|QαQ

†
α |A〉+ 〈A|QαQ

†
α |A〉

= ‖Qα |A〉 ‖2 + ‖Q†
α |A〉 ‖2 . (11.8)

This expression is non-negative; it can be zero only if Qα and Q†
α annihilate

every state in the theory.
However, in a relativistic quantum field theory, we do not have the

freedom to introduce arbitrary charges that have nontrivial Lorentz trans-
formation properties. Conservation of energy-momentum and angular mo-
mentum are already very constraining. For example, in two-body scatter-
ing, the scattering amplitude for fixed center of mass energy can only be a
function of one variable, the center of mass scattering angle θ. If one adds
a second conserved 4-vector charge, almost all values of θ will also be for-
bidden. Coleman and Mandula proved a stronger version of this statement:
In a theory with an addtional conserved 4-vector charge, there can be no
scattering at all, and so the theory is trivial [20].

If we would like to have (11.5) as an exact symmetry, then, the only
possibility is to set Rm = Pm. That is, the square of the fermionic charge
Qα must be the total energy-momentum of everything. We started out
trying to build a theory in which the fermionic charge acted only on the
Higgs field. But now, it seems, the fermionic charge must act on every field
in the theory. Everything—quarks, leptons, gauge bosons, even gravitons—
must have partners under the symmetry generated by Qα. Qα is fermionic
and carries spin 1

2 . Then every particle in the theory must have a partner
with the opposite statistics and spin differing by 1

2 unit.
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The idea that the transformation (11.5) leads to a profound general-
ization of space-time symmetry was discovered independently several times
in the early 1970’s [22,23]. The 1974 paper by Wess and Zumino [24]
which gave simple linear realizations of this algebra on multiplets of fields
launched the detailed exploration of this symmetry and its application to
particle physics.

The pursuit of (11.5) then necessarily leads us to introduce a very large
number of new particles. This seems quite daunting. It might be a reason
to choose one of the other paths, except that these also lead to new physics
models of similarly high complexity. I encourage you to carry on with this
line of analysis a bit longer. It will lead to a beautiful structure with many
interesting implications for the theory of Nature.

11.2. Formalism of Supersymmetry

11.2.1. Fermions in 4 Dimensions

To work out the full consequences of (11.5), we will need to write this
equation more precisely. To do this, we need to set up a formalism that
describes relativistic fermions in four dimensions in the most general way.
There is no general agreement on the best conventions to use, but every
discussion of supersymmetry leans heavily on the particular choices made.
I will give my choice of conventions in this section.

There are two basic spin- 1
2 representations of the Lorentz group. Each

is two-dimensional. The transformation laws are those of left- and right-
handed Weyl (2-component) fermions,

ψL → (1− i~α · ~σ/2− ~β · ~σ/2)ψL

ψR → (1− i~α · ~σ/2 + ~β · ~σ/2)ψR , (11.9)

where ~α is an infinitesimal rotation angle and ~β is an infinitesimal boost.
The four-component spinor built from these ingredients, Ψ = (ψL, ψR), is
a Dirac fermion.

Define the matrix

c = −iσ2 =
(

0 −1
1 0

)
. (11.10)

This useful matrix satisfies c2 = −1, cT = −c. The combination

ψT
1Lcψ2L = −εαβψ1Lαψ2Lβ (11.11)
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is the basic Lorentz invariant product of spinors. Many treatments of su-
persymmetry, for example, that in Wess and Bagger’s book [7], represent c
implicitly by raising and lowering of spinor indices. I will stick to this more
prosaic approach.

Using the identity ~σc = −c(~σ)T , it is easy to show that the quantity
(−cψ∗L) transforms like ψR. So if we wish, we can replace every ψR by
a ψL and write all fermions in the theory as left-handed Weyl fermions.
With this notation, for example, we would call e−L and e+L fermions and e−R
and e+R antifermions. This convention does not respect parity, but parity
is not a symmetry of the Standard Model. The convention of representing
all fermions in terms of left-handed Weyl fermions turns out to be very
useful for not only for supersymmetry but also for other theories of physics
beyond the Standard Model.

Applying this convention, a Dirac fermion takes the form

Ψ =
(

ψ1L

−cψ∗2L

)
(11.12)

Write the Dirac matrices in terms of 2× 2 matrices as

γm =
(

0 σm

σm 0

)
(11.13)

with

σm = (1, ~σ)m σm = (1,−~σ)m cσm = (σm)T c (11.14)

Then the Dirac Lagrangian can be rewritten in the form

L = Ψiγ · ∂Ψ−MΨΨ

= ψ†1Liσ · ∂ψ1L + ψ†2Liσ · ∂ψ2L

−(mψT
1Lcψ2L −m∗ψ†1Lcψ

∗
2L) . (11.15)

For the bilinears in the last line, we can use fermion anticommutation and
the antisymmetry of c to show

ψT
1Lcψ2L = +ψT

2Lcψ1L . (11.16)

and, similarly,

(ψT
1Lcψ2L)† = ψ†2L(−c)ψ∗1L = −ψ†1Lcψ

∗
2L . (11.17)

The mass term looks odd, because it is fermion number violating. However,
the definition of fermion number is that given in the previous paragraph.
The fields ψ1L and ψ2L annihilate, respectively, e−L and e+L . So this mass
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term generates the conversion of e−L to e−R, which is precisely what we would
expect a mass term to do.

If we write all fermions as left-handed Weyl fermions, the possibilities for
fermion actions are highly restricted. The most general Lorentz-invariant
free field Lagrangian takes the form

L = ψ†kiσ · ∂ψk −
1
2
(mjkψ

T
j cψk −m∗

jkψ
†
jcψ

∗
k) . (11.18)

where j, k index the fermion fields. Here and in the rest of these lectures, I
drop the subscript L. The matrix mjk is a complex symmetric matrix. For
a Dirac fermion,

mjk =
(

0 m

m 0

)
jk

(11.19)

as we have seen in (11.15). This matrix respects the charge

Qψ1 = +ψ1 , Qψ2 = −ψ2 , (11.20)

which is equivalent to the original Dirac fermion number. A Majorana
fermion is described in the same formalism by the mass matrix

mjk = mδjk . (11.21)

The most general fermion mass is a mixture of Dirac and Majorana terms.
We will meet such fermion masses in our study of supersymmetry. These
more general mass matrices also occur in other new physics models and in
models of the masses of neutrinos.

The SUSY charges are four-dimensional fermions. The minimum set
of SUSY charges thus includes one Weyl fermion Qα and its Hermitian
conjugate Q†

α. We can now analyze the anticommutator {Qα, Q
†
β}. Since

the indices belong to different Lorentz representations, this object does not
contain a scalar. The indices transform as do the spinor indices of σm, and
so we can rewrite (11.7) with Rm = Pm as

{Qα, Q
†
β} = 2σm

αβPm . (11.22)

It is possible to construct quantum field theories with larger supersym-
metry algebras. These must include (11.22), and so the general form is [21]

{Qi
α, Q

†j
β } = 2σm

αβPmδ
ij , (11.23)

for i, j = 1 . . . N . This relation can be supplemented by a nontrivial anti-
commutator

{Qi
α, Q

j
β} = 2εαβQij (11.24)
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where the central charge Qij is antisymmetric in [ij]. Theories with N > 4
necessarily contain particles of spin greater than 1. Yang-Mills theory with
N = 4 supersymmetry is an especially beautiful model with exact scale in-
variance and many other attractive formal properties [25]. In these lectures,
however, I will restrict myself to the minimal case of N = 1 supersymmetry.

I will discuss supersymmetry transformations using the operation on
fields

δξΦ = [ξT cQ+Q†cξ∗,Φ] . (11.25)

Note that the operator δξ contains pairs of anticommuting objects and so
obeys commutation rather than anticommutation relations. The operator
Pm acts on fields as the generator of translations, Pm = i∂m. Using this,
we can rewrite (11.22) as

[δξ, δη] = 2i
(
ξ†σmη − η†σmξ

)
∂m (11.26)

I will take this equation as the basic (anti)-commutation relation of super-
symmetry. In the next two sections, I will construct some representations
of this commutation relation on multiplets of fields.

11.2.2. Supersymmetric Lagrangians with Scalars and Fermions

The simplest representation of the supersymmetry algebra (11.26) di-
rectly generalizes the transformation (11.5) from which we derived the idea
of supersymmetry. The full set of fields required includes a complex-valued
boson field φ and a Weyl fermion field ψ. These fields create and destroy
a scalar particle and its antiparticle, a left-handed massless fermion, and
its right-handed antiparticle. Note that the particle content has an equal
number of fermions and bosons. This particle content is called a chiral
supermultiplet.

I will now write out the transformation laws for the fields corresponding
to a chiral supermultiplet. It is convenient to add a second complex-valued
boson field F that will have no associated particles. Such a field is called
an auxiliary field. We can then write the transformations that generalize
(11.5) as

δξφ =
√

2ξT cψ

δξψ =
√

2iσncξ∗∂nφ+
√

2F ξ

δξF = −
√

2iξ†σm∂mψ . (11.27)
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The conjugates of these transformations are

δξφ
∗ = −

√
2ψ†cξ∗

δξψ
† =

√
2iξT cσn∂nφ

∗ +
√

2ξ†F ∗

δξF
∗ =

√
2i∂mψ

†σmξ . (11.28)

These latter transformations define the antichiral supermultiplet. I claim
that the transformations (11.27) and (11.28), first, satisfy the fundamental
commutation relation (11.26) and, second, leave a suitable Lagrangian in-
variant. Both properties are necessary, and both must be checked, in order
for a set of transformations to generate a symmetry group of a field theory.

The transformation laws (11.27) seem complicated. You might won-
der if there is a formalism that generates these relations automatically and
manipulates them more easily than working with the three distinct com-
ponent fields (φ, ψ, F ). In the next section, I will introduce a formalism
called superspace that makes it almost automatic to work with the chiral
supermultiplet. However, the superspace description of the multiplet con-
taining gauge fields is more complicated, and the difficulty of working with
superspace becomes exponentially greater in theories that include gravity,
higher dimensions, or N > 1 supersymmetry. At some stage, one must go
back to components. I strongly recommend that you gain experience by
working through the component field calculations described in these notes
in full detail, however many large pieces of paper that might require.

To verify each of the two claims I have made for (11.27) requires a little
calculation. Here is the check of the commutation relation applied to the
field φ:

[δξ, δη]φ = δξ(
√

2ηT cψ)− (ξ ↔ η)

=
√

2ηT c(
√

2iσncξ∗∂nφ)− (ξ ↔ η)

= −2iηT (σn)T ξ∗∂nφ− (ξ ↔ η)

= 2i[ξ†σnη − η†σnξ]∂nφ

(11.29)

The check of the commutation relation applied to F is equally straightfor-
ward. The check on ψ is a bit lengthier. It requires a Fierz identity, that
is, a spinor index rearrangment identity. Specifically, we need

ηαξ
†
β = −1

2
(ξ†σmη)σm

αβ , (11.30)

which you can derive by writing out the four components explicitly. After
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some algebra that involves the use of this identity, you can see that the
SUSY commutation relation applied to ψ also takes the correct form.

Next, I claim that the Lagrangian

L = ∂mφ∗∂mφ+ ψ†iσ · ∂ψ + F ∗F (11.31)

is invariant to the transformation (11.27). I will assume that the Lagrangian
(11.31) is integrated

∫
d4x and use integration by parts freely. Then

δξL = ∂mφ∗∂m(
√

2ξT cψ) + (−
√

2∂mψ†cξ∗)∂φ

+ψ†iσ · ∂[
√

2iσncξ∗∂mφ+
√

2ξF ]

+[
√

2i∂nφ
∗ξT cσn +

√
2ξ†F ∗]iσ · ∂ψ

+F ∗[−
√

2iξ†σm∂mψ] + [
√

2i∂mψ
†σmξ]F

= −φ∗
√

2ξT c∂2ψ +
√

2∂nφ
∗ξT cσnσm∂n∂mψ

+
√

2ψ†cξ∗∂2φ−
√

2ψ†σmσncξ∗∂m∂nφ

+
√

2iψ†σm∂mFξ +
√

2i∂mψ
†σmξF

−
√

2iξ†F ∗σm∂mψ +
√

2iF ∗ξ†σm∂mψ

= 0 . (11.32)

In the final expression, the four lines cancel line by line. In the first two
lines, the cancellation is made by using the identity (σ · ∂)(σ · ∂) = ∂2.

So far, our supersymmetry Lagrangian is just a massless free field theory.
However, it is possible to add rather general interactions that respect the
symmetry. Let W (φ) be an analytic function of φ, that is, a function that
depends on φ but not on φ∗. Let

LW = F
∂W

∂φ
− 1

2
ψT cψ

∂2W

∂φ2
(11.33)

I claim that LW is invariant to (11.27). Then we can add (LW + L†W )
to the free field Lagrangian to introduce interactions into the theory. The
function W is called the superpotential.

We can readily check that LW is indeed invariant:

δξLW = F
∂2W

∂φ2
(
√

2ξT cψ)−
√

2FξT cψ
∂2W

∂φ2

−
√

2iξ†σm∂mψ
∂W

∂φ
− ψT c

√
2iσncξ∗∂nφ

∂2W

∂φ2

−ψT cψ
∂3W

∂φ3

√
2ξT cψ . (11.34)
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The second line rearranges to

−
√

2iξ†σ
(
∂nψ

∂W

∂φ
+ ψ∂nφ

∂2W

∂φ2

)
, (11.35)

which is a total derivative. The third line is proportional to ψαψβψγ , which
vanishes by fermion antisymmetry since the spinor indices take only two
values. Thus it is true that

δξLW = 0 . (11.36)

The proofs of invariance that I have just given generalize straightfor-
wardly to systems of several chiral supermultiplets. The requirement on
the superpotential is that it should be an analytic function of the complex
scalar fields φk. Then the following Lagrangian is supersymmetric:

L = ∂mφ∗k∂mφk + ψ†kiσ · ∂ψk + F ∗
kFk + LW + L†W , (11.37)

where

LW = Fk
∂W

∂φk
− 1

2
ψT

j cψk
∂2W

∂φj∂φk
. (11.38)

In this Lagrangian, the fields Fk are Lagrange multipliers. They obey the
constraint equations

F ∗
k = −∂W

∂φk
. (11.39)

Using these equations to eliminate the Fk, we find an interacting theory
with the fields φk and ψk, a Yukawa coupling term proportional to the
second derivative of W , as given in (11.38), and the potential energy

VF =
∑

k

∣∣∣∣∂W∂φk

∣∣∣∣2 . (11.40)

I will refer to VF as the F-term potential. Later we will meet a second
contribution VD, the D-term potential. These two terms, both obtained by
integrating out auxiliary fields, make up the classical potential energy of a
general supersymmetric field theory of scalar, fermion, and gauge fields.

The simplest example of the F-term potential appears in the theory
with one chiral supermultiplet and the superpotential W = 1

2mφ
2. The

constraint equation for F is [27]

F ∗ = −mφ . (11.41)
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After eliminating F , we find the Lagrangian

L = ∂nφ∗∂nφ− |m|2φ∗φ+ ψ†iσ · ∂ψ − 1
2
(mψT cψ −m∗ψ†cψ∗) (11.42)

This is a theory of two free scalar bosons of mass |m| and a free Majorana
fermion with the same mass |m|. The Majorana fermion has two spin states,
so the number of boson and fermion physical states is equal, as required.

The form of the expression (11.40) implies that VF ≥ 0, and that VF = 0
only if all Fk = 0. This constraint on the potential energy follows from a
deeper consideration about supersymmetry. Go back to the anticommuta-
tion relation (11.22), evaluate it for α = β, and take the vacuum expectation
value. This gives

〈0| {Qα, Q
†
α} |0〉 = 〈0| (H − P 3) |0〉 = 〈0|H |0〉 , (11.43)

since the vacuum expectation value of P 3 vanishes by rotational invariance.
Below (11.7), I argued that the left-hand side of this equation is greater than
or equal to zero. It is equal to zero if and only if

Qα |0〉 = Q†
α |0〉 = 0 (11.44)

The formulae (11.44) give the criterion than the vacuum is invariant under
supersymmetry. If this relation is not obeyed, supersymmetry is sponta-
neously broken. Taking the vacuum expectation value of the transformation
law for the chiral representation, we find

〈0| [ξT cQ+Q†cξ∗, ψk] |0〉 = 〈0|
√

2iσnξ∗∂nφk + ξFk |0〉
= ξ 〈0|Fk |0〉 . (11.45)

In the last line I have used the fact that the vacuum expectation value of
φ(x) is translation invariant, so its derivative vanishes. The left-hand side
of (11.45) vanishes if the vacuum state is invariant under supersymmetry.

The results of the previous paragraph can be summarized in the fol-
lowing way: If supersymmetry is a manifest symmetry of a quantum field
theory,

〈0|H |0〉 = 0 , and 〈0|Fk |0〉 = 0 (11.46)

for every F field of a chiral multiplet. In complete generality,

〈0|H |0〉 ≥ 0 . (11.47)

The case where 〈H〉 is positive and nonzero corresponds to spontaneously
broken supersymmetry. If the theory has a state satisfying (11.44), this is
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necesssarily the state in the theory with lowest energy. Thus, supersym-
metry can be spontaneously broken only if a supersymmetric vacuum state
does not exist

It is possible that a supersymmetric vacuum state might exist but that
a higher-energy vacuum state might be metastable. A model built on this
metastable state would show spontaneous breaking of supersymmetry [26].

For the moment, we will work with theories that preserve supersym-
metry. I will give examples of theories with spontaneous supersymmetry
breaking in Section 3.5.

The results we have just derived are exact consequences of the commu-
tation relations of supersymmetry. It must then be true that the vacuum
energy of a supersymmetric theory must vanish in perturbation theory.
This is already nontrivial for the free theory (11.42). But it is correct. The
positive zero point energy of the boson field exactly cancels the negative
zero point energy of the fermion field. With some effort, one can show the
cancellation also for the leading-order diagrams in an interacting theory.
Zumino proved that this cancellation is completely general [29].

I would like to show you another type of cancellation that is also seen in
perturbation theory in models with chiral fields. Consider the model with
one chiral field and superpotential

W =
λ

3
φ3 . (11.48)

After eliminating F , the Lagrangian becomes

L = ∂φ∗∂mφ+ ψ†iσ · ∂ψ − λ(φψT cψ − φ∗ψ†cψ∗)− λ2|φ|4 . (11.49)

The vertices of this theory are shown in Fig. 11.3(a).
From our experience in (11.2), we might expect to find an addditive

radiative correction to the scalar mass. The corrections to the fermion and
scalar mass terms are given by the diagrams in Fig. 11.3(b). Actually, there
are no diagrams that correct the fermion mass; you can check that there
it is not possible to match the arrows appropriately. For the scalar mass
correction, the two diagrams shown contribute

−4iλ2

∫
d4p

(2π)4
i

p2
+

1
2
(−2iλ)(+2iλ)

∫
d4p

(2π)4
tr
[
iσ · p
p2

c
iσT · (−p)

p2
c

]
(11.50)

Using σ · pσ · p = p2 in the second term and then taking the trace, we see
that these two contributions cancel precisely. In this way, supersymmetry
really does control radiative corrections to the Higgs mass, following the
logic that we presented in Section 1.2.
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Fig. 11.3.: Perturbation theory for the supersymmetric model (11.49): (a) vertices
of the model; (b) corrections to the fermion and scalar masses.

In fact, it can be shown quite generally that not only the mass term but
the whole superpotentialW receives no additive radiative corrections in any
order of perturbation theory [30]. For example, the one-loop corrections to
quartic terms in the Lagrangian cancel in a simple way that is indicated
in Fig. 11.4. The field strength renormalization of chiral fields can be
nonzero, so the form of W can be changed by radiative corrections by
the rescaling of fields. Examples are known in which W receives additive
radiative corrections from nonperturbative effects [31].

Fig. 11.4.: Scheme of cancellations of one-loop corrections to the F-term potential.

11.2.3. Superspace

Because the commutation relations of supersymmetry include the gen-
erators of translations, supersymmetry is a space-time symmetry. It is an
attractive idea that supersymmetry is the natural set of translations on
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a generalized space-time with commuting and anticommuting coordinates.
In this section, I will introduce the appropriate generalization of space-time
and use it to re-derive some of the results of Section 2.2.

Consider, then, a space with four ordinary space-time coordinates xµ

and four anticommuting coordinates (θα, θα). I will take the coordinates
θα to transform as 2-component Weyl spinors; the θα are the complex
conjugates of the θα. This is superspace. A superfield is a function of these
superspace coordinates: Φ(x, θ, θ).

It is tempting to define supersymmetry transformations as translations
θ → θ + ξ. However, this does not work. These transformations commute,
[δξ, δη] = 0, and we have seen in Section 1.2 that this implies that the S-
matrix of the resulting field theory must be trivial. To construct a set of
transformations with the correct commutation relations, we must write

δξΦ = QξΦ , (11.51)

where

Qξ =
(
− ∂

∂θ
− iθσm∂m

)
ξ + ξ†

(
∂

∂θ
+ iσmθ∂m

)
. (11.52)

This is a translation of the fermionic coordinates (θ, θ) plus a translation
of the ordinary space-time coordinates proportional to θ, θ. It is straight-
forward to show that these operators satisfy

[Qξ,Qη] = −2i
(
ξ†σmη − η†σmξ

)
∂m . (11.53)

Despite the fact that this equation has an extra minus sign on the right-hand
side with respect to (11.26), it is the relation that we want. (The difference
is similar to that between active and passive transformations.) Combined
with the decomposition of the superfield that I will introduce below, this
relation will allow us to derive the chiral supermultiplet transformation laws
(11.27).

Toward this goal, we need one more ingredient. Define the superspace
derivatives

Dα =
∂

∂θα
− i(θσm)α∂m Dα = − ∂

∂θα

+ i(σmθ)α∂m , (11.54)

such that (DαΦ)† = DαΦ†. These operators commute with Qξ:

[Dα,Qξ] = 0 [Dα,Qξ] = 0 . (11.55)

Thus, we can constrain Φ by the equation

DαΦ = 0 or DαΦ = 0 , (11.56)
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and these constraints are consistent with supersymmetry. What we have
just shown is that the general superfield Φ(x, θ, θ) is a reducible represen-
tation of supersymmetry. It can be decomposed into a direct sum of three
smaller representations, one constrained by the first of the relations (11.56),
one constrained by the second of these relations, and the third containing
whatever is left over in Φ when these pieces are removed.

Let’s begin with the constraint DαΦ = 0. The solution of this equation
can be written

Φ(x, θ, θ) = Φ(x+ iθσmθ, θ) , (11.57)

that is, this solution is parametrized by a general function of x and θ. Since
θ is a two-component anticommuting object, this general function of x and
θ can be represented as

Φ(x, θ) = φ(x) +
√

2θT cψ(x) + θT cθF (x) . (11.58)

The field content of this expression is exactly that of the chiral supermul-
tiplet. The supersymmetry transformation of this field should be

δξΦ = QξΦ(x+ iθσmθ, θ) . (11.59)

It is straightforward to compute the right-hand side of (11.59) in terms of
θ, θ, and the component fields of (11.58). The coefficients of powers of θ are
precisely the supersymmetry variations given in (11.27). Thus a superfield
satisfying

DαΦ = 0 (11.60)

is equivalent to a chiral supermultiplet, and the transformation (11.59) gives
the supersymmetry transformation of this multiplet. A superfield satisfying
(11.60) is called a chiral superfield. Similarly, a superfield satisfying

DαΦ = 0 (11.61)

is called an antichiral superfield. This superfield has a component field de-
composition (φ∗, ψ∗, F ∗), on which Qξ induces the transformation (11.28).
I will describe the remaining content of the general superfield Φ in Sec-
tion 2.5.

A Lagrangian on Minkowski space is integrated over d4x. A superspace
Lagrangian should be also be integrated over the θ coordinates. Integration
over fermionic coordinates is defined to be proportional to the coefficient of
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the highest power of θ. I will define integration over superspace coordinates
by the formulae∫

d2θ 1 =
∫
d2θ θα = 0

∫
d2θ(θT cθ) = 1 (11.62)

and their conjugates. To use these formulae, expand the superfields in
powers of θ and pick out the terms proportional to (θT cθ). Then, if Φ is a
chiral superfield constrained by (11.60) and W (Φ) is an analytic function
of Φ, ∫

d2θ Φ(x, θ) = F (x)∫
d2θ W (Φ) = F (x)

∂W

∂φ
− 1

2
ψT cψ

∂2W

∂2φ
, (11.63)

where, in the second line, W on the right-hand side is evaluated with
Φ = φ(x). With somewhat more effort, one can show∫

d2θ

∫
d2θ Φ†Φ = ∂mφ∗∂mφ+ ψ†iσ · ∂ψ + F ∗F . (11.64)

These formulae produce the invariant Lagrangians of chiral supermul-
tiplets from a superspace point of view. The most general Lagrangian of
chiral superfields Φk takes the form

L =
∫
d4θK(Φ,Φ†) +

∫
d2θW (Φ) +

∫
d2θ (W (Φ))† , (11.65)

where W (Φ) is an analytic function of complex superfields and K(Φ,Φ†) is
a general real-valued function of the superfields. The Lagrangian (11.37)
is generated from this expression by taking K(Φ,Φ†) = Φ†

kΦk. The most
general renormalizable Lagrangian of chiral supermultiplets is obtained by
taking K to be of this simple form and taking W to be a polynomial of
degree at most 3.

Because the integral d2θ exposes the Lagrange multiplier F in (11.58), I
will refer to a term with this superspace integral as an F-term. For similar
reasons that will become concrete in the next section, I will call a term with
a d4θ integral a D-term.

In the remainder of these lectures, I will restrict myself to discussing
renormalizable supersymmetric theories. But, still, it is interesting to ask
what theories we obtain when we take more general forms for K. The
Lagrangian for φ turns out to be a nonlinear sigma model for which the
target space is a complex manifold with the metric [32]

gmn =
∂2

∂Φm∂Φ†nK(Φ,Φ†) (11.66)
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A complex manifold whose metric is derived from a potential in this way
is called a Kähler manifold. The function K is the Kähler potential. It is
remarkable that, wherever in ordinary quantum field theory we find a gen-
eral structure from real analysis, the supersymmetric version of the theory
has a corresponding complex analytic structure.

Now that we have a Lagrangian in superspace, it is possible to derive
Feynman rules and compute Feynman diagrams in superspace. I do not
have space here to discuss this formalism; it is discussed, for example,
in [7] and [30]. I would like to state one important consequence of this
formalism. It turns out that, barring some special circumstances related to
perturbation theory anomalies, these Feynman diagrams always generate
corrections to the effective Lagrangian that are D-terms,∫

d4θ X(Φ,Φ†) . (11.67)

The perturbation theory does not produce terms that are integrals
∫
d2θ.

This leads to an elegant proof of the result cited at the end of the pre-
vious section that the superpotential is not renormalized at any order in
perturbation theory [30].

11.2.4. Supersymmetric Lagrangians with Vector Fields

To construct a supersymmetric model that can include the Standard
Model, we need to be able to write supersymmetric Lagrangians that in-
clude Yang-Mills vector fields. In this section, I will discuss how to do
that.

To prepare for this discussion, let me present my notation for gauge
fields in a general quantum field theory. The couplings of gauge bosons to
matter are based on the covariant derivative, which I will write as

Dmφ = (∂m − igAa
mt

a
R)φ (11.68)

for a field φ that belongs to the representation R of the gauge group G. In
this formula, taR are the representation matrices of the generators of G in
the representation R. These obey

[taR, t
b
R] = ifabctcR (11.69)

The coefficients fabc are the structure constants of G. They are independent
of R; essentially, their values define the multiplication laws of G. They can
be taken to be totally antisymmetric.



March 24, 2008 11:31 World Scientific Review Volume - 9in x 6in peskin˙ws

Supersymmetry in Elementary Particle Physics 643

The generators of G transform under G according to a representation
called the adjoint representation. I will denote this representation by R =
G. Its representation matrices are

(taG)bc = if bac (11.70)

These matrices satisfy (11.69) by virtue of the Jacobi identity. The covari-
ant derivative on a field in the adjoint representation takes the form

DmΦa = ∂mΦa + gfabcAb
mΦc (11.71)

The field strengths F a
mn are defined from the covariant derivative (in any

representation) by

[Dm,Dn] = −igF a
mnt

a
R . (11.72)

This gives the familiar expression

F a
mn = ∂mA

a
n − ∂nA

a
m + gfabcAb

mA
c
n . (11.73)

Now we would like to construct a supersymmetry multiplet that contains
the gauge field Aa

m. The fermion in the multiplet should differ in spin by
1
2 unit. To write a renormalizable theory, we must take this to be a spin- 1

2

Weyl fermion. I will then define the vector supermultiplet

(Aa
m, λ

a
α, D

a) (11.74)

including the gauge field, a Weyl fermion in the adjoint representation
of the gauge group, and an auxililary real scalar field, also in the adjoint
representation, that will have no independent particle content. The particle
content of this multiplet is one massless vector boson, with two transverse
polarization states, and one massless fermion and antifermion, for each
generator of the gauge group. The fermion is often called a gaugino. The
number of physical states is again equal between bosons and fermions.

The supersymmetry transformations for this multiplet are

δξA
am = [ξ†σmλa + λ†aσmξ]

δξλ
a = [iσmnF a

mn +Da]ξ

δξλ
†a = ξ†[iσmnF a

mn +Da]

δξD
a = −i[ξ†σmDmλ

a −Dmλ
†aσmξ] (11.75)

where

σmn =
1
4
(σmσn − σnσm) . (11.76)
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I encourage you to verify that these tranformations obey the algebra

[δξ, δη] = 2i
(
ξ†σmη − η†σmξ

)
∂m + δα , (11.77)

where δα is a gauge tranformation with the gauge parameter

α = −2i(ξ†σmη − η†σmξ)Aa
m . (11.78)

Acting on λa, the extra term δα in (11.77) can be combined with the trans-
lation to produce the commutation relation

[δξ, δη]λa = 2i
(
ξ†σmη − η†σmξ

)
(Dmλ)a . (11.79)

This rearrangement applies also for the auxiliary fieldDa and for any matter
field that tranforms linearly under G. The gauge field Aam does not satisfy
this last criterion; instead, we find

[δξ, δη]Aa
m = 2i(ξ†σnη − η†σnξ)(∂nA

a
m −DmAn)

= 2i(ξ†σnη − η†σnξ)F a
nm (11.80)

The proof that (11.75) satisfies the supersymmetry algebra is more tedious
than for (11.29), but it is not actually difficult. For the transformation of
λa we need both the Fierz identity (11.30) and the relation

ηαξβ − (ξ ↔ η) = −(ξT cσpqη)(σpqc)αβ . (11.81)

The matrices σpqc and cσpq are symmetric in their spinor indices.
Again, the transformation laws leave a simple Lagrangian invariant. For

the vector supermultiplet, this Lagrangian is that of the renormalizable
Yang-Mills theory including the gaugino:

LF = −1
4
(F a

mn)2 + λ†aiσ · Dλa +
1
2
(Da)2 (11.82)

The kinetic term for Da contains no derivatives, so this field will be a
Lagrange multiplier.

The vector supermultiplet can be coupled to matter particles in chiral
supermultiplets. To do this, we must first modify the transformation laws
of the chiral supermultiplet so that the commutators of supersymmetry
transformations obey (11.77) or (11.79). The modified transformation laws
are:

δξφ =
√

2ξT cψ

δξψ =
√

2iσncξ∗Dnφ+
√

2Fξ

δξF = −
√

2iξ†σmDmψ − 2gξ†cλa∗taφ (11.83)
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In this formula, the chiral fields φ, ψ, F must belong to the same rep-
resentation of G, with ta a representation matrix in that representation.
From the transformation laws, we can construct the Lagrangian. Start
from (11.31), replace the derivatives by covariant derivatives, add terms
to the Lagrangian involving the λa to cancel the supersymmetry variation
of these terms, and then add terms involving Da to cancel the remaining
supersymmetry variation of the λa terms. The result is

LD = Dmφ∗Dmφ+ ψ†iσ · Dψ + F ∗F

−
√

2g(φ∗λaT tacψ − ψ†cλa∗taφ) + gDaφataφ . (11.84)

The proof that this Lagrangian is supersymmetric, δξL = 0, is completely
straightforward, but it requires a very large sheet of paper.

The gauge invariance of the theory requires the superpotential La-
grangian LW to be invariant under G as a global symmetry. Under this
condition, LW , which contains no derivatives, is invariant under (11.83)
without modification. The combination of LF , LD, and LW , with W a
polynomial of degree at most 3, gives the most general renormalizable su-
persymmetric gauge theory.

As we did with the F field of the chiral multiplet, it is interesting to
eliminate the Lagrange multiplier Da. For the Lagrangian which is the sum
of (11.82) and (11.84), the equation of motion for Da is

Da = −gφ∗taφ . (11.85)

Eliminating Da gives a second potential energy term proportional to (Da)2.
This is the D-term potential promised below (11.40). I will write the result
for a theory with several chiral multiplets:

VD =
1
2
g2

(∑
k

φ∗kt
aφk

)2

. (11.86)

As with the F-term potential, VD ≥ 0 and vanishes if and only if Da = 0.
It can be shown by an argument similar to (11.45) that

〈0|Da |0〉 = 0 (11.87)

unless supersymmetry is spontaneously broken.
It makes a nice illustration of this formalism to show how the Higgs

mechanism works in supersymmetry. For definiteness, consider a super-
symmetric gauge theory with the gauge group U(1).
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Introduce chiral supermultiplets φ+, φ−, and X, with charges +1, −1,
and 0, respectively, and the superpotential

W = λ(φ+φ− − v2)X . (11.88)

The F = 0 equations are

F ∗
X = (φ+φ− − v2) = 0 F ∗

± = φ±X = 0 . (11.89)

To solve these equations, set

X = 0 φ+ = v/y φ− = vy , (11.90)

where y is a complex-valued parameter. The D = 0 equation is

φ†+φ+ − φ†−φ− = 0 . (11.91)

This implies |y| = 1. So y is a pure phase and can be removed by a U(1)
gauge transformation.

Now look at the pieces of the Lagrangian that give mass to gauge bosons,
fermions, and scalars. The gauge field receives mass from the Higgs mech-
anism. To compute the mass, we can look at the scalar kinetic terms

φ†+(−D2)φ+ + φ†−(−D2)φ− = · · ·+ φ†+(g2A2)φ+ + φ†−(g2A2)φ− . (11.92)

Putting in the vacuum expectation values φ+ = φ− = v, we find

m2 = 4g2v2 (11.93)

for the vector fields. The mode of the scalar field

δφ+ = η/
√

2 δφ− = −η/
√

2 , (11.94)

with η real, receives a mass from the D-term potential energy

g2

2
(φ†+φ+ − φ†−φ−)2 (11.95)

Expanding to quadratic order in η, we see that η also receives the mass
m2 = 4g2v2. The corresponding mode for η imaginary is the infinitesimal
version of the phase rotation of y that we have already gauged away below
(11.91). The mode of the fermion fields

δψ+ = χ/
√

2 δψ− = −χ/
√

2 (11.96)

mixes with the gaugino through the term

−
√

2g(φ†+λ
T cψ+ − φ†−λ

T cψ−) + h.c. (11.97)
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Putting in the vacuum expectation values φ+ = φ− = v, we find a Dirac
mass with the value

m = 2gv (11.98)

In all, we find a massive vector boson, a massive real scalar, and a massive
Dirac fermion, all with the mass m = 2gv. The system has four physical
bosons and four physical fermions, all with the same mass, as supersym-
metry requires.

11.2.5. The Vector Supermultiplet in Superspace

The vector supermultiplet has a quite simple representation in super-
space. This multiplet turns out to be the answer to the question that we
posed in our discussion of superspace in the previous section: When the
chiral and antichiral components of a general superfield are removed, what
is left over? To analyze this issue, I will write a Lagrangian containing a
local symmetry that allows us to gauge away the chiral and antichiral com-
ponents of this superfield. Let V (x, θ, θ) be a real-valued superfield, acted
on by a local gauge transformation in superspace

δV = − i
g
(Λ− Λ†) (11.99)

where Λ is a chiral superfield and Λ† is its conjugate. Since Λ satisfies
(11.60), its expansion in powers of θ contains

Λ(x, θ, θ) = Λ(x+ iθσθ, θ) = α(x) + · · ·+ iθσmθ∂mα(x) + · · · (11.100)

The general superfield V contains a term
The factor 2 in this equation is convenient but disagrees with some

standard treatments, e.g., [7].

V (x, θ, θ) = · · ·+ 2θσmθ Am(x) + · · · (11.101)

So the superfield V contains a space-time vector field Am(x), and under
(11.99), Am transforms as

δAm =
1
g
∂m(Reα) . (11.102)

This is just what we would like for an Abelian gauge field. So we should
accept (11.99) as the generalization of the Abelian gauge transformation to
superspace.

The real-valued superfield transforming under (11.99) is called a vector
superfield. To understand its structure, use the gauge transformation to
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remove all components with powers of θ or θ only. This choice is called
Wess-Zumino gauge [33]. What remains after this gauge choice is

V (x, θ, θ) = 2θσmθ Am(x) + 2θ
2
θT cλ− 2θ2θ

T
cλ∗ + θ2θ

2
D . (11.103)

This expression has exactly the field content of the Abelian vector super-
multiplet (Am, λ,D).

This gauge multiplet can be coupled to matter described by chiral su-
perfields. For the moment, I will continue to discuss the Abelian gauge
theory. For a chiral superfield Φ with charge Q, the gauge transformation

δΦ = iQΛΦ (11.104)

contains a standard Abelian gauge transformation with gauge parameter
Reα(x) and also preserves the chiral nature of Φ. Then the superspace
Lagrangian ∫

d2θd2θ Φ†egQV Φ (11.105)

is gauge-invariant. Using the representation (11.103) and the rules (11.62),
it is straightforward to carry out the integrals explicitly and show that
(11.105) reduces to (11.84), with ta = Q for this Abelian theory.

We still need to construct the pure gauge part of the Lagrangian. To
do this, first note that, because a quantity antisymmetrized on three Weyl
fermion indices vanishes,

DαD
2
X = 0 (11.106)

for any superfield X. Thus, acting with D
2

makes any superfield a chiral
superfield. The following is a chiral superfield that also has the property
that its leading component is the gaugino field λ(x):

Wα = −1
8
D

2
(Dc)αV . (11.107)

Indeed, working this out in full detail, we find that Wα = Wα(x+ iθσθ, θ),
with

Wα(x, θ) = λα + [(iσmnFmn +D)θ]α + θT cθ [∂mλ
∗iσmc]α . (11.108)

The chiral superfield Wα is the superspace analogue of the electromag-
netic field strength. The Lagrangian∫

d2θ
1
2
WT cW (11.109)
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reduces precisely to the Abelian version of (11.82). It is odd that the kinetic
term for gauge fields is an F-term rather than a D-term. It turns out that
this term can be renormalized by loop corrections as a consequence of the
trace anomaly [34]. However, the restricted form of the correction has
implications, both some simple ones that I will discuss later in Section 4.3
and and more profound implications discussed, for example, in [35,36].

I will simply quote the generalizations of these results to the non-Abelian
case. The gauge transformation of a chiral superfield in the representation
R of the gauge group is

Φ → eiΛata

Φ Φ† → Φ†e−iΛ†ata

, (11.110)

where Λa is a chiral superfield in the adjoint representation of G and ta is
is the representation of the generators of G in the representation R. The
gauge transformation of the vector superfield is

egV ata

→ eiΛ†ata

egV ata

e−iΛata

(11.111)

Then the Lagrangian ∫
d2θd2θΦ†egV ata

Φ (11.112)

is locally gauge-invariant. Carrying out the integrals in the gauge (11.103)
reduces this Lagrangian to (11.84).

The form of the field strength superfield is rather more complicated than
in the Abelian case,

W a
αt

a = − 1
8g
D

2
e−gV ata

(Dc)αe
gV ata

(11.113)

In Wess-Zumino gauge, this formula does reduce to the non-Abelian version
of (11.108),

W a
α(x, θ) = λa

α + [(iσmnF a
mn +Da)θ]α + θT cθ [Dmλ

∗aiσmc]α . (11.114)

Then the Lagrangian ∫
d2θ tr[WT cW ] (11.115)

reduces neatly to (11.82).
The most general renormalizable supersymmetric Lagrangian can be

built out of these ingredients. We need to put together the Lagrangian
(11.115), plus a term (11.112) for each matter chiral superfield, plus a
superpotential Lagrangian to represent the scalar field potential energy.
These formulae can be generalized to the case of a nonlinear sigma model
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on a Kähler manifold, with the gauge symmetry associated with an isometry
of this target space. For the details, see [7].

11.2.6. R-Symmetry

The structure of the general superspace action for a renormalizable the-
ory of scalar and fermion fields suggests that this theory has a natural
continuous symmetry.

The superspace Lagrangian is

L =
∫
d2θ tr[WT cW ] +

∫
d4θΦ†egV ·tΦ +

∫
d2θW (Φ) +

∫
d2θ (W (Φ))† .

(11.116)
Consider first the case in which W (φ) contains only dimensionless param-
eters and is therefore a cubic polynomial in the scalar fields. Then L is
invariant under the U(1) symmetry

Φk(x, θ) → e−i2α/3Φk(x, eiαθ) , V a(x, θ, θ) → V a(x, eiαθ, e−iαθ)
(11.117)

or, in components,

φk → e−i2α/3φk , ψk → eiα/3ψk , λa → e−iαλa , (11.118)

and the gauge fields are invariant. This transformation is called R-
symmetry. Under R-symmetry, the charges of bosons and fermions differ
by 1 unit, in such a way that that the gaugino and superpotential vertices
have zero net charge.

Since all left-handed fermions have the same charge under (11.118), the
R-symmetry will have an axial vector anomaly. It can be shown that the
R-symmetry current (of dimension 3, spin 1) forms a supersymmetry mul-
tiplet together with the supersymmetry current (dimension 7

2 , spin 3
2 ) and

the energy-momentum tensor (dimension 4, spin 2) [37]. All three currents
have perturbation-theory anomalies; the anomaly of the energy-momentum
tensor is the trace anomaly, associated with the breaking of scalar invari-
ance by coupling constant renormalization. The R-current anomaly is thus
connected to the running of coupling constants and gives a useful formal
approach to study this effect in supersymmetric models.

It is often possible to combine the transformation (11.117) with other
apparent U(1) symmetries of the theory to define a non-anomalous U(1)
R-symmetry. Under such a symmetry, we will have

Φk(x, θ) → e−iβkΦk(x, eiαθ) , such that W (x, θ) → e2iαW (x, eiαθ) .
(11.119)
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Such symmetries also often arise in models in which the superpotential has
dimensionful coefficients.

In models with extended, N > 1, supersymmetry, the R-symmetry
group is also extended, to SU(2) for N = 2 and to SU(4) for N = 4
supersymmetry.

11.3. The Minimal Supersymmetric Standard Model

11.3.1. Particle Content of the Model

Now we have all of the ingredients to construct a supersymmetric gen-
eralization of the Standard Model. To begin, let us construct a version
of the Standard Model with exact supersymmetry. To do this, we assign
the vector fields in the Standard Model to vector supermultiplets and the
matter fields of the Standard Model to chiral supermultiplets.

The vector supermultiplets correspond to the generators of SU(3) ×
SU(2) × U(1). In these lectures, I will refer to the gauge bosons of these
groups as Aa

m, W a
m, and Bm, respectively. I will represent the Weyl fermion

partners of these fields as g̃a, w̃a, b̃. I will call these fields the gluino, wino,
and bino, or, collectively, gauginos. In the later parts of these lectures, I
will drop the tildes over the gaugino fields when they are not needed for
clarity.

I will assign the quarks and leptons to be fermions in chiral superfields.
I will use the convention presented in Section 1.3 of considering left-handed
Weyl fermions as the basic particles and right-handed Weyl fermions as their
antiparticles. In the Standard Model, the left-handed fields in a fermion
generation have the quantum numbers

L =
(
ν

e

)
e Q =

(
u

d

)
u d (11.120)

The field e is the left-handed positron; the fields u, d are the left-handed
antiquarks. The right-handed Standard Model fermion fields are the con-
jugates of these fields. To make a generalization to supersymmetry, we will
extend each of the fields in (11.120)—for each of the three generations—to
a chiral supermultiplet. I will use the symbols

L̃ ẽ Q̃ ũ d̃ (11.121)

to represent both the supermultiplets and the scalar fields in these multi-
plets. Again, I will drop the tilde if it is unambiguous that I am referring
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to the scalar partner rather than the fermion. The scalar particles in these
supermultiplets are called sleptons and squarks, collectively, sfermions.

What about the Higgs field? The Higgs field of the Standard Model
should be identified with a complex scalar component of a chiral supermul-
tiplet. But it is ambiguous what the quantum numbers of this multiplet
should be. In the Standard Model, the Higgs field is a color singlet with
I = 1

2 , but we can take the hypercharge of this field to be either Y = + 1
2

or Y = − 1
2 , depending on whether we take the positive hypercharge field

or its conjugate to be primary. In a supersymmetric model, the choice
matters. The superpotential is an analytic function of superfields, so it can
only contain the field, not the conjugate. Then different Higgs couplings
will be allowed depending on the choice that we make.

The correct solution to this problem is to include both possibilities, That
is, we include a Higgs supermultiplet with Y = + 1

2 and a second Higgs
supermultiplet with Y = − 1

2 . I will call the scalar components of these
multiplets Hu and Hd, respectively:

Hu =
(
H+

u

H0
u

)
Hd =

(
H0

d

H−
d

)
(11.122)

I will refer to the Weyl fermion components with these quantum numbers
as h̃u, h̃d. These fields or particles are called Higgsinos.

I will argue below that it is necessary to include both Higgs fields in
order to obtain all of the needed couplings in the superpotential. However,
there is another argument. The axial vector anomaly of one U(1) and two
SU(2) currents (Fig. 11.5) must vanish to maintain the gauge invariance
of the model. In the Standard Model, the anomaly cancels nontrivially
between the quarks and the leptons. In the supersymmetric generalization
of the Standard Model, each Higgsino makes a nonzero contribution to this
anomaly. These contributions cancel if we include a pair of Higgsinos with
opposite hypercharge.

Fig. 11.5.: The anomaly cancellation that requires two doublets of Higgs fields in
the MSSM.
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11.3.2. Grand Unification

Before writing the Lagrangian in detail, I would like to point out that
there is an interesting conclusion that follows from the quantum number
assignments of the new particles that we have introduced to make the Stan-
dard Model supersymmetric.

An attractive feature of the Standard Model is that the quarks and
leptons of each generation fill out multiplets of the simple gauge group
SU(5). This suggests a very beautiful picture, called grand unification, in
which SU(5), or a group such as SO(10) or E6 for which this is a subgroup,
is the fundamental gauge symmetry at very short distances. This unified
symmetry will be spontaneously broken to the Standard Model gauge group
SU(3)× SU(2)× U(1).

For definiteness, I will examine the model in which the grand unified
symmetry group is SU(5). The generators of SU(5) can be represented
as 5 × 5 Hermitian matrices acting on the 5-dimensional vectors in the
fundamental representation. To see how the Standard Model is embedded
in SU(5), it is convenient to write these matrices as blocks with 3 and 2
rows and columns. Then the Standard Model generators can be identified
as

SU(3) :
(
ta

0

)
; SU(2) :

(
0
σa/2

)
; U(1) :

√
3
5

(
− 1

31
1
21

)
.

(11.123)
In these expressions, ta is an SU(3) generator, σa/2 is an SU(2) generator,
and all of these matrices are normalized to tr[TATB ] = 1

2δ
AB . We should

identify the last of these matrices with
√

3/5 Y .
The symmetry-breaking can be caused by the vacuum expectation value

of a Higgs field in the adjoint representation of SU(5). The expectation
value

〈Φ〉 = V ·
(
− 1

31
1
21

)
(11.124)

commutes with the generators in (11.123) and fails to commute with the
off-diagonal generators. So this vacuum expectation value gives mass to the
off-diagonal generators and breaks the gauge group to SU(3)×SU(2)×U(1).

Matter fermions can be organized as left-handed Weyl fermions in the
SU(5) representations 5 and 10. The 5 is the conjugate of the fundamental
representation of SU(5); the 10 is the antisymmetric matrix with two 5
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indices.

5 :


d

d

d

e

ν


L

; 10 :


0 u u u d

0 u u d
0 u d

0 e
0


L

(11.125)

It is straightforward to check that each entry listed has the quantum num-
bers assigned to that field in the Standard Model. To compute the hy-
percharges, we act on the 5 with (−1) times the hypercharge generator in
(11.123), and we act on the 10 with the hypercharge generator on each
index. This gives the standard results, for example, Y = + 1

3 for the d and
Y = − 1

3 + 1
2 = 1

6 for u and d.
The SU(5) covariant derivative is

Dm = (∂m − igUA
A
mT

A) , (11.126)

where gU is the SU(5) gauge coupling. There is only room for one value
here. So this model predicts that the three Standard Model gauge couplings
are related by

g3 = g2 = g1 = gU , (11.127)

where

g3 = gs g2 = g g1 =

√
5
3
g′ . (11.128)

Clearly, this prediction is not correct for the gauge couplings that we mea-
sure in particle physics.

However, there is a way to save this prediction. In quantum field theory,
coupling constants are functions of length scale and change their values
significantly from one scale to another by renormalization group evolution.
It is possible that the values of g′, g, and gs that we measure could evolve
at very short distances into values that obey (11.127).

I will now collect the formulae that we need to analyze this question.
Let

αi =
g2

i

4π
(11.129)

for i = 1, 2, 3. The one-loop renormalization group equations for gauge
couplings are

dgi

d logQ
= − bi

(4π)2
g3

i or
dαi

d logQ
= − bi

(2π)
α2

i . (11.130)
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For U(1), the coefficient b1 is

b1 = −2
3

∑
f

3
5
Y 2

f −
1
3

∑
b

3
5
Y 2

b , (11.131)

where the two sums run over the multiplets of left-handed Weyl fermions
and complex-valued bosons. The factors 3

5Y
2 are the squares of the U(1)

charges defined by (11.123). For non-Abelian groups, the expressions for
the b coefficients are

b = −11
3
C2(G)− 2

3

∑
f

C(rf )− 1
3

∑
b

C(rb) , (11.132)

where C2(G) and C(r) are the standard group theory coefficients. For
SU(N),

C2(G) = C(G) = N , C(N) =
1
2
. (11.133)

The solution of the renormalization group equation (11.130) is

α−1(Q) = α−1(M)− bi
2π

log
Q

M
. (11.134)

Now consider the situation in which the three couplings gi become equal
at the mass scale MU , the mass scale of SU(5) symmetry breaking. Let αU

be the value of the αi at this scale. Using (11.134), we can then determine
the Standard Model couplings at any lower mass scale. The three αi(Q)
are determined by two parameters. We can eliminate those parameters and
obtain the relation

α−1
3 = (1 +B)α−1

2 −Bα−1
1 (11.135)

where

B =
b3 − b2
b2 − b1

. (11.136)

The values of the αi are known very accurately at Q = mZ [38]:

α−1
3 = 8.50±0.14 α−1

2 = 29.57±0.02 α−1
1 = 59.00±0.02 . (11.137)

Inserting these values into (11.135), we find

B = 0.716± 0.005± 0.03 . (11.138)

In this formula, the first error is that propagated from the errors in (11.137)
and the second is my estimate of the systematic error from neglecting the
two-loop renormalization group coefficients and other higher-order correc-
tions.
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We can compare the value of B in (11.138) to the values of (11.136) from
different models. The hypothesis that the three Standard Model couplings
unify is acceptable only if the gauge theory that describes physics between
mZ and MU gives a value of B consistent with (11.138). The minimal
Standard Model fails this test. The values of the bi are

b3 = 11− 4
3
ng

b2 =
22
3
− 4

3
ng −

1
6
nh

b1 = − 4
3
ng −

1
10
nh (11.139)

where ng is the number of generations and nh is the number of Higgs
doublets. Notice that ng cancels out of (11.136). This is to be expected.
The Standard Model fermions form complete representations of SU(5), and
so their renormalization effects cannot lead to differences among the three
couplings. For the minimal case nh = 1 we find B = 0.53. To obtain a
value consistent with (11.138), we need nh = 6.

We can redo this calculation in the minimal supersymmetric version of
the Standard Model. First of all, we should rewrite (11.132) for a super-
symmetric model with one vector supermultiplet, containing a vector and
a Weyl fermion in the adjoint representation, and a set of chiral supermul-
tiplets indexed by k, each with a Weyl fermion and a complex boson. Then
(11.132) becomes

bi =
11
3
C2(G)− 2

3
C2(G)−

(
2
3

+
1
3

)∑
k

C(rk)

= 3C2(G)−
∑

k

C(rk) (11.140)

The formula (11.131) undergoes a similar rearrangement. Inserting the
values of the C(rk) for the fields of the Standard Model, we find

b3 = 9− 2ng

b2 = 6− 2ng −
1
2
nh

b1 = − 2ng −
3
10
nh (11.141)

For the minimal Higgs content nh = 2, this gives

B =
5
7

= 0.714 (11.142)
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in excellent agreement with (11.138).
In Fig. 11.6, I show the unification relation pictorially. The three data

points on the the left of the figure represent the measured values of the three
couplings (11.137). Starting from the values of α1 and α2, we can integrate
(11.130) up to the scale at which these two couplings converge. Then we
can integrate the equation for α3 back down to Q = mZ and see whether
the result agrees with the measured value. The lower set of curves presents
the result for the Standard Model with nh = 1. The upper set of curves
shows the result for the supersymmetric extension of the Standard Model
with nh = 2. This choice gives excellent agreement with the measured value
of αs.

Fig. 11.6.: Prediction of the SU(3) gauge coupling αs from the electroweak cou-
pling constants using grand unification, in the Standard Model and in the MSSM.

Actually, I slightly overstate the case for supersymmetry by ignoring
two-loop terms in the renormalization group equations, and also by inte-
grating these equations all the way down to mZ even though, from searches
at high-energy colliders, most of the squarks and gluinos must be heavier
than 300 GeV. A more accurate prediction of αs(mZ) from the electroweak
coupling constants gives a slightly higher value, 0.13 instead of 0.12. How-
ever, these corrections could easily be compensated by similar corrections
to the upper limit of the integration, following the details of the particle
spectrum at the grand unification scale. For a more detailed formal analy-
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sis of these corrections, see [39], and for a recent evaluation of their effects,
see [40]. It remains a remarkable fact that the minimal supersymmetric
extension of the Standard Model is approximately compatible with grand
unification ‘out of the box’, with no need for further model-building.

11.3.3. Construction of the Lagrangian

Now I would like to write the full Lagrangian of the minimal supersym-
metric extension of the Standard Model, which I will henceforth call the
MSSM.

The kinetic terms and gauge couplings of the MSSM Lagrangian are
completely determined by supersymmetry, the choice of the gauge group
SU(3) × SU(2) × U(1), and the choice of the quantum numbers of the
matter fields. The Lagrangian is a sum of terms of the forms (11.82) and
(11.84). Up to this point, the only parameters that need to be introduced
are the gauge couplings g1, g2, and g3.

Next, we need a superpotential W . The superpotential is the source of
nonlinear fermion-scalar interactions, so we should include the appropriate
terms to generate the Higgs Yukawa couplings needed to give mass to the
quarks and leptons. The appropriate choice is

WY = yij
d d

i
HdαεαβQ

j
β + yij

e e
iHdαεαβL

j
β − yij

u u
iHuαεαβQ

j
β . (11.143)

The notation for the quark and lepton multiplets is that in (11.120); the
indices i, j = 1, 2, 3 run over the three generations. The indices α, β = 1, 2
run over SU(2) isospin indices. Notice that the first two terms require a
Higgs field Hd with Y = − 1

2 , while the third term requires a Higgs field
Hu with Y = 1

2 . If we leave out one of the Higgs multiplets, some quarks
or leptons will be left massless. This is the second argument that requires
two Higgs fields in the MSSM.

I have written (11.143) including the most general mixing between left-
and right-handed quarks and leptons of different generations. However, as
in the minimal Standard Model, we can remove most of this flavor mixing by
appropriate field redefinitions. The coupling constants yd, ye, yu are general
3× 3 complex-valued matrices. Any such matrix can be diagonalized using
two unitary transformations. Thus, we can write

yd = WdYdV
†
d ye = WeYeV

†
e yu = WuYuV

†
u , (11.144)

with Wa and Va 3× 3 unitary matrices and Ya real, positive, and diagonal.
The unitary transformations cancel out of the kinetic energy terms and
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gauge couplings in the Lagrangian, except that the W boson coupling to
quarks is transformed

gu†σmdW+
m → gu†σm(V †

uVd)dW+
m . (11.145)

From this equation, we can identify (V †
d Vu) = VCKM , the Cabibbo-

Kobayashi-Maskawa weak interaction mixing matrix. The Lagrangian term
(11.143) thus introduces the remaining parameters of the Standard Model,
the 9 quark and lepton masses (ignoring neutrino masses) and the 4 CKM
mixing angles. The field redefinition (11.144) can also induce or shift a QCD
theta parameter, so the MSSM, like the Standard Model, has a strong CP
problem that requires an axion or another model-building solution [41].

There are several other terms that can be added to W . One possible
contribution is a pure Higgs term

Wµ = −µHdαεαβHuβ . (11.146)

The parameter µ has the dimensions of mass, and consequently this mu
term provides a supersymmetric contribution to the masses of the Higgs
bosons. Because this term is in the superpotential, it does not receive ad-
ditive raditive corrections. Even in a theory that includes grand unification
and energies scale of the order of 1016 GeV, we can set the parameter µ
to be of order 100 GeV without finding this choice affected by large quan-
tum corrections. We will see in Section 4.2 that the mu term is needed for
phenomenological reasons. If µ = 0, a Higgsino state will be massless and
should have been detected already in experiments. It is odd that a theory
whose fundamental mass scale is the grand unification scale should require
a parameter containing a weak interaction mass scale. I will present some
models for the origin of this term in Section 3.5.

At this point, we have introduced two new parameters beyond those in
the Standard Model. One is the value of µ. The other is the result of the
fact that we have two Higgs doublets in the model. The ratio of the Higgs
vacuum expectation values

〈Hu〉 / 〈Hd〉 ≡ tanβ (11.147)

will appear in many of the detailed predictions of the MSSM.
There are still more superpotential terms that are consistent with the

Standard Model gauge symmetry and quantum numbers. These are

W 6R = η1εijkuidjdk + η2dεαβLαQβ

+η3eεαβLαLβ + η4εαβLαHuβ . (11.148)
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Here i, j, k are color indices, α, β are isospin indices, and arbitrary genera-
tion mixing is also possible. These terms violate baryon and lepton number
through operators with dimensionless coefficients. In constructing super-
symmetric models, it is necessary either to forbid these terms by imposing
appropriate discrete symmetries or to arrange by hand that some of the
dangerous couplings are extremely small [42].

If baryon number B and lepton number L are conserved in a supersym-
metric model, this model respects a discrete symmetry called R-parity,

R = (−1)3B+L+2J . (11.149)

Here (3B) is quark number and J is the spin of the particle. This quantity
is constructed so that R = +1 on the particles of the Standard Model
(including the Higgs bosons) and R = −1 on their supersymmetry partners.
R acts differently on particles of different spin in the same supermultiplet,
so R-parity is a discrete subgroup of a continuous R-symmetry.

In a model with grand unification, there will be baryon number and
lepton number violation, and so B and L cannot be used as fundamental
symmetries. However, we can easily forbid most of the superpotential terms
(11.148) by introducing a discrete symmetry that distinguishes the field Hd

from the lepton doublets Li. A similar strategy can be used to forbid the
first, 3-quark, term. With these additional discrete symmetries, the MSSM,
including all other terms considered up to this point, will conserve R-parity.

11.3.4. The Lightest Supersymmetric Particle

If R-parity is conserved, the lightest supersymmetric particle will be
absolutely stable. This conclusion has an important implication for the
relation of supersymmetry to cosmology. If a supersymmetric particle is
stable for a time longer than the age of the universe, and if this particle is
electrically neutral, that particle is a good candidate for the cosmic dark
matter. In Sections 6.3 and 6.4, I will discuss in some detail the properties
of models in which the lightest Standard Model superpartner is the dark
matter particle.

However, this is not the only possibility. Over times much longer than
those of particle physics experiments—minutes, years, or billions of years—
we need to consider the possibility that the lightest Standard Model super-
partner will decay to a particle with only couplngs of gravitational strength.
Complete supersymmetric models of Nature must include a superpartner of
the graviton, a spin- 3

2 particle called the gravitino. In a model with exact
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supersymmetry, the gravitino will be massless, but in a model with spon-
taneously broken supersymmetry, the gravitino acquires a mass through
an analogue of the Higgs mechanism. If the supersymmetry breaking is
induced by one dominant F -term, the value of this mass is [43]

m3/2 =
8π
3
〈F 〉
mPl

. (11.150)

This expression is of the same order of magnitude as the expressions for
Standard Model superpartner masses that I will give in Section 3.6. In
string theory and other unified models, there may be additional Standard
Model singlet fields with couplings of gravitation strength, called moduli,
that might also be light enough that long-lived Standard Model superpart-
ners could decay to them.

Supersymmetric models with R-parity conservation and dark matter,
then, divide into two classes, according to the identity of the lightest super-
symmetric particle—the LSP. On one hand, the LSP could be a Standard
Model superpartner. Cosmology requires that this particle is neutral. Sev-
eral candidates are available, including the fermionic partners of the photon,
Z0, and neutral Higgs bosons and the scalar partner of one of the neutrinos.
In all cases, these particles will be weakly interacting; when they are pro-
duced at high-energy colliders, they should not make signals in a particle
detector. On the other hand, the LSP could be the gravitino or another
particle with only gravitational couplings. In that case, the lightest Stan-
dard Model superpartner could be a charged particle. Whether this particle
is visible or neutral and weakly interacting, its decay should be included in
the phenomenology of the model.

11.3.5. Models of Supersymmetry Breaking

There is still one important effect that is missing in our construction of
the MSSM. The terms that we have written so far preserve exact supersym-
metry. A fully supersymmetric model would contain a massless fermionic
partner of the photon and a charged scalar particle with the mass of the
electron. These particles manifestly do not exist. So if we wish to build a
model of Nature with supersymmetry as a fundamental symmetry, we need
to arrange that supersymmetry is spontaneously broken.

From the example of spontaneous symmetry breaking in the Standard
Model, we would expect to do this by including in the MSSM a field whose
vacuum expectation value leads to supersymmetry breaking. This is not as



March 24, 2008 11:31 World Scientific Review Volume - 9in x 6in peskin˙ws

662 Michael E. Peskin

easy as it might seem. To explain why, I will first present some models of
supersymmetry breaking.

The simplest model of supersymmetry breaking is the O’Raifeartaigh
model [44], with three chiral supermultiplets φ0, φ1, φ2 interacting through
the superpotential

W = λφ0 +mφ1φ2 + gφ0φ
2
1 . (11.151)

This superpotential implies the F = 0 conditions

0 = F ∗
0 = λ+ gφ2

1

0 = F ∗
1 = mφ2 + 2gφ0φ1

0 = F ∗
2 = mφ1 (11.152)

The first and third equations contradict one another. It is impossible to
satisfy both conditions, and so there is no supersymmetric vacuum state.
This fulfils the condition for spontaneous supersymmetry breaking that I
presented in Section 2.2.

This mechanism of supersymmetry breaking has an unwanted corollary.
Because one combination of the scalar fields appears in two different con-
straints in (11.152), there must be an orthogonal combination that does not
appear at all. This means that the F-term potential VF has a surface of
degenerate vacuum states. To see this explicitly, pick a particular vacuum
solution

φ0 = φ1 = φ2 = 0 . (11.153)

and expand the potential VF about this point. There are 6 real-valued
boson fields with masses

0 , 0 , m , m ,
√
m2 − 2λg ,

√
m2 + 2λg . (11.154)

These six fields do not pair into complex-valued fields; that is already an
indication that supersymmetry is broken. The fermion mass term in (11.38)
gives one Dirac fermion mass m and leaves one Weyl fermion massless.
This massless fermion is the Goldstone particle associate with spontaneous
supersymmetry breaking.

A property of these masses is that the sum rule for fermion and boson
masses

str[m2] =
∑

m2
f −

∑
m2

b = 0 (11.155)

remains valid even when supersymmetry is broken. This sum rule is the
coefficient of the one-loop quadratic divergence in the vacuum energy. Since
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supersymmetry breaking does not affect the ultraviolet structure of the
theory, this coefficient must cancel even if supersymmetry is spontaneously
broken [45]. In fact, if Q is a conserved charge in the model, the sum rule
is valid in each charge sector Q = q:

strq[m2] = 0 . (11.156)

In the O’Raifeartaigh model, supersymmetry is spontaneously broken
by a nonzero expectation value of an F term. It is also possible to break
supersymmetry with a nonzero expectation value of a D term. The D-term
potential VD typically has zeros. For example, in an SU(3) supersymmetric
Yang-Mills theory,

VD =
1
2

∑
3

φ†taφ−
∑
3

φtaφ
†

2

(11.157)

and it is easy to find solutions in which the terms in parentheses sum to
zero. However, it is not difficult to arrange a VF such that the solutions
of the F = 0 conditions do not coincide with the solutions of the D = 0
conditions. This leads to spontaneous symmetry breaking, again with the
sum rule (11.156) valid at tree level.

Unfortunately, the sum rule (11.156) is a disaster for the prospect of
finding a simple model of spontaneously broken supersymmetry that ex-
tends the Standard Model. For the charge sector of the d squarks, we
would need all down-type squarks to have masses less than 5 GeV. For the
charge sector of the charged leptons, we would need all sleptons to have
masses less than 2 GeV.

11.3.6. Soft Supersymmetry Breaking

The solution to this problem is to construct models of spontaneously
broken supersymmetry using a different strategy from the one that we use
for electroweak symmetry breaking in the Standard Model. To break elec-
troweak symmetry, we introduce a Higgs sector whose mass scale is the
same as the scale of the fermion and gauge boson masses induced by the
symmetry breaking. To break supersymmetry, however, we could introduce
a new sector at a much higher mass scale, relying on a weak coupling of the
new sector to the Standard Model particles to communicate the supersym-
metry breaking terms. In principle, a weak gauge interaction could supply
this coupling. However, the default connection is through gravity. Gravity
and supergravity couple to all fields. It can be shown that supersymmetry
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breaking anywhere in Nature is communicated to all other sectors through
supergravity couplings.

We are thus led to the following picture, which produces a phenomeno-
logically reasonable supersymmetric extension of the Standard Model: We
extend the Standard Model fields to supersymmetry multiplets in the man-
ner described in Section 3.1. We also introduce a hidden sector with no di-
rect coupling to quark, leptons, and Standard Model gauge bosons. Super-
symmetry is spontaneously broken in this hidden sector. A weak interaction
coupling the two sectors then induces a supersymmetry-breaking effective
interaction for the Standard Model particles and their superpartners. If Λ
is the mass scale of the hidden sector, the supersymmetry breaking mass
terms induced for the Standard Model sector are of the order of

m ∼ 〈F 〉
M

∼ Λ2

M
; (11.158)

where M is the mass of the particle responsible for the weak connection
between the two sectors. M is called the messenger scale. By default, the
messenger is supergravity. Then M = mPl and Λ ∼ 1011 GeV. In this
scenario, the superpartners acquire masses of the order of the parameter m
in (11.158).

It remains true that the quarks, leptons, and gauge bosons cannot ob-
tain mass until SU(2) × U(1) is broken. It is attractive to think that
the symmetry-breaking terms that give mass to the superpartners cause
SU(2)× U(1) to be spontaneously broken, at more or less the same scale.
I will discuss a mechanism by which this can happen in Section 6.1. The
weak interaction scale would then not be a fundamental scale in Nature, but
rather one that arises dynamically from the hidden sector and its couplings.

The effective interaction that are generated by messenger exchange gen-
erally involve simple operators of low mass dimensions, to require the min-
imal number of powers of M in the denominator. These operators are soft
perturbations of the theory, and so we say that the MSSM is completed by
including soft supersymmetry-breaking interactions.

However, the supersymmetry-breaking terms induced in this model will
not include all possible low-dimension operators. Since these interactions
arise by coupling into a supersymmetry theory, they are formed by starting
with a supersymmetric effective action and turning on F and D expectation
values as spurions. Only a subset of the possible supersymmetry-breaking
terms can be formed in this way [46]. By replacing a superfield Φ by
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θT cθ 〈F 〉, we can convert∫
d4θK(Φ, φ) → m2φ†φ∫

d2θ f(Φ)WT cW → mλT cλ∫
d2W (Φ, φ) → Bφ2 +Aφ3 (11.159)

However, as long as the φ theory is renormalizable, we cannot generate the
terms

mψT cψ , Cφ∗φ2 , (11.160)

by turning on expectation values for F and D fields. Thus, we cannot
generate supersymmetry-breaking interactions that are mass terms for the
fermion field of a chiral multiplet or non-holomorphic cubic terms for the
scalar fields.

There is another difficulty with terms of the form (11.160). In models
with Standard Model singlet scalar fields, which typically occur in concrete
models, these two interactions can generate new quadratic divergences when
they appear in loop diagrams [46].

Here is the most general supersymmetry-breaking effective Lagrangian
that can be constructed following the rule just given that is consistent with
the gauge symmetries of the Standard Model:

Lsoft = −M2
f |f̃ |2 −

1
2
miλ

Ta
i cλa

i

−(Adydd̃HdαεαβQ̃β +AeyeẽHdαεαβL̃β

−AuyuũHuαεαβQ̃β −BµHdαεαβHuβ)− h.c. (11.161)

I have made the convention of scaling the A terms with the corresponding
Yukawa couplings and scaling the B terms with µ. The parameters A and
B then have the dimensions of mass and are expected to be of the order of
m in (11.158).

For most of the rest of these lectures, I will represent the effects of the
hidden sector and supersymmetry breaking simply by adding (11.161) to
the supersymmetric Standard Model. I will then consider the MSSM to be
defined by

L = LF + LD + LW + Lsoft (11.162)

combining the pieces from (11.82), (11.84), (11.143), (11.146), and (11.161).
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There are two problems with this story. The first is the µ term in
the MSSM superpotential. This a supersymmetric term, and so µ can
be arbitrarily large. To build a successful phenomenology of the MSSM,
however, we need to have µ of the order of the weak scale. Ideally, µ should
be parametrically equal to (11.158).

There are simple mechanisms that can solve this problem. A fundamen-
tal theory that leads to the renormalizable Standard Model at low energies
can also contain higher-dimension operators suppressed by the high-energy
mass scale. Associate this scale with the messenger scale. Then a super-
symmetric higher-dimension operator in the superpotential∫

d2θ
1
M
S2HdHu (11.163)

leads to a µ term if S acquires a vacuum expectation value. If S is a hidden
sector field, we could find [47]

µ =

〈
S2
〉

M
∼ Λ2

M
, (11.164)

A supersymmetric higher dimension contribution to the Kähler potential∫
d4θ

1
M

Φ†HdHu (11.165)

leads to a µ term if Φ acquires a vacuum expectation value in its F term.
If Φ is a hidden sector field, we could find [48]

µ =
〈FΦ〉
M

∼ Λ2

M
, (11.166)

In models with weak-coupling dynamics, higher-dimension operators are
associated with the string or Planck scale; then, these mechanisms work
most naturally if supergravity is the mediator. However, it is also possible
to apply these strategies in models with strong-coupling dynamics in the
hidden sector at an intermediate scale.

Generating the µ term typically requires breaking all continuous R-
symmetries of the model. This is unfortunate, because an R-symmetry
might be helpful phenomenologically, for example, to keep gaugino masses
small while allowing sfermion masses to become large, or because it might
be difficult to break an R-symmetry using a particular explicit mechanism
of supersymmetry breaking. In this case, it is necessary to add Standard
Model singlet fields to the MSSM to allow all gaugino and Higgsino fields
to acquire nonzero masses. Models of this type are presented in [49,50].
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The second problem involves the flavor structure of the soft supersym-
metry breaking terms. In writing (11.161), I did not write flavor indices.
In principle, these terms could have flavor-mixing that is arbitrary in struc-
ture and different from that in (11.143). Then the flavor-mixing would not
be transformed away when (11.143) is put into canonical form. However,
flavor-mixing from the soft supersymmetry breaking terms is highly con-
strained by experiment. Contributions such as the one shown in Fig. 11.7
give contributions to K0, D0, and B0 mixing, and to τ → µγ and µ→ eγ,
that can be large compared to the measured values or limits. Theories of
the origin of the soft terms in models of supersymmetry breaking should
address this problem. For example, the models of gauge-mediated [52] and
anomaly-mediated [53,54] supersymmetry breaking induce soft terms that
depend only on the SU(2)×U(1) quantum number and are therefore auto-
matically diagonal in flavor. A quite different solution, based on a extension
of the MSSM with a continuous R-symmetry, is presented in [51].

Fig. 11.7.: A dangerous contribution to K-K mixing involving gluino exchange
and flavor mixing in the squark mass matrix.

If I assume that the soft supersymmetry-breaking Lagrangian is diagonal
in flavor but is otherwise arbitrary, it introduces 22 new parameters. With
arbitrary flavor and CP violation, it introduces over 100 new parameters.
This seems a large amount of parameter freedom. I feel that it is not correct,
though, to think of these as new fundamental parameters in physics. The
soft Lagrangian is computed from the physics of the hidden sector, and
so we might expect that these parameters are related to one another as a
part of a theory of supersymmetry breaking. Indeed, the values of these
parameters are the essential data from which we will infer the properties of
the hidden sector and its new high energy interactions.

If supersymmetry is discovered at the weak interaction scale, it will be
a key problem to measure the coefficients in the soft Lagrangian and to
understand their pattern and implications. Most of my discussion in the
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next two sections will be devoted to the question of how the soft parameters
can be determined from data at the LHC and ILC.

11.4. The Mass Spectrum of the MSSM

11.4.1. Sfermion Masses

Our first task in this program is to ask how the parameters of the MSSM
Lagrangian are reflected in the mass spectrum of the superparticles. The
relation between the MSSM parameters and the particle masses is surpris-
ingly complicated, even at the tree level. For each particle, we will need to
collect all of the pieces of the Lagrangian (11.162) that can contribute to
the mass term. Some of these will be direct mass contributions; others will
contain Higgs fields and contribute to the masses when these fields obtain
their vacuum expectation values. In this discussion, and in the remainder
of these lectures, I will ignore all flavor-mixing.

Begin with the squark and slepton masses. For light quarks and leptons,
we can ignore the fermion masses and Higgs couplings. Even with this
simplification, though, there are two sources for the scalar masses. One is
the soft mass term

Lsoft = −M2
f |f̃ |2 . (11.167)

The other comes from the D-term potential. The SU(2) and U(1) po-
tentials contain the cross terms between the Higgs field and sfermion field
contributions

VD =
g2

2
· 2 · (H†

d

σ3

2
Hd +H†

u

σ3

2
Hu) · (f̃∗t3f̃)

+
g′2

2
· 2 · (−1

2
H†

dHd +
1
2
H†

uHu) · (f̃∗Y f̃) . (11.168)

To evalute this expression, we must insert the vacuum expectation values
of the two Higgs fields. In terms of the angle β defined in (11.147), these
are

〈Hu〉 =

(
0

1√
2
v sinβ

)
〈Hd〉 =

(
1√
2
v cosβ
0

)
, (11.169)

where v = 246 GeV so that mW = gv/2.
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Inserting the Higgs vevs into the potential (11.168), we find

VD = f̃∗
[v2

4
(cos2 β − sin2 β)(g2I3 − g′2Y )

]
f̃

= f̃∗
[ (g2 + g′2)v2

4
cos 2β (I3 − s2w(I3 + Y ))

]
f̃

= f̃∗
[
m2

Z cos 2β(I3 − s2wQ)
]
f̃ . (11.170)

Then, if we define

∆f = (I3 − s2wQ) cos 2β m2
Z , (11.171)

the mass of a first- or second-generation sfermion takes the form

m2
f = M2

f + ∆f (11.172)

when contributions proportional to fermion masses can be neglected. The
D-term contribution can have interesting effects. For example, SU(2) in-
variance of M2

f implies that

m2(ẽ)−m2(ν̃) = |cos 2β| m2
Z > 0 . (11.173)

For some choices of parameters, the measurement of this mass difference is
a good way to determine tanβ [55].

For third-generation fermions, the contributions to the mass term from
Yukawa couplings and from A terms can be important. For the b̃ and b̃,
these contributions come from the terms in the effective Lagrangian

|Fb|2 + |Fb|
2 = |yb

〈
H0

d

〉
b̃|2 + |ybb̃

〈
H0

d

〉
|2 = m2

b(|̃b|2 + |̃b|2)

|FHd|2 = (−µ
〈
H0

d

〉
)∗(ybb̃ b̃) + h.c. = −µmb tanβ b̃ b̃+ h.c.

−Lsoft = Abyb

〈
H0

d

〉
b̃ b̃ = Abmbb̃ b̃ . (11.174)

In all, we find a mass matrix with mixing between the two scalar partners
of the b quark, (

b̃∗ b̃
∗ )
M2

b

(
b̃

b̃

)
, (11.175)

with

M2
b =

(
M2

b + ∆b +m2
b mb(Ab − µ tanβ)

mb(Ab − µ tanβ) M2
b

+ ∆b +m2
b

)
(11.176)

The mass matrix for τ̃ , τ̃ has the same structure. For t̃, t̃, replace tanβ by
cotβ.
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The mixing terms in the mass matrices of the third-generation sfermions
often play an important role in the qualitative physics of the whole SUSY
model. Because of the mixing, one sfermion eigenstate is pushed down in
mass. This state is often the lightest squark or even the lightest superpar-
ticle in the theory.

11.4.2. Gaugino and Higgsino Masses

In a similar way, we can compute the mass terms for the gauginos and
Higgsinos. Since the gauginos and Higgsino have the same quantum num-
bers after SU(2)×U(1) breaking, they will mix. We have seen in Section 2.4
that this mixing plays an essential role in the working of the Higgs mech-
anism in the limit where soft supersymmetry breaking terms are turned
off.

The charged gauginos and Higgsinos receive mass from three sources.
First, there is a soft SUSY breaking term

−Lsoft = m2w̃
−T cw̃+ . (11.177)

The µ superpotential term contributes

−LW = µh̃−T
d ch̃+

u . (11.178)

The gauge kinetic terms contribute

−L =
√

2
g√
2

(〈
H0

d

〉
w̃+T ch̃−d +

〈
H0

u

〉
w̃−T ch̃+

u

)
(11.179)

Inserting the Higgs field vevs from (11.169), we find the mass term

(
w̃−T h̃−T

d

)
c mC

(
w̃+

h̃+
u

)
, (11.180)

with

mC =
(

m2

√
2mW sinβ√

2mW cosβ µ

)
. (11.181)

The mass matrix for neutral gauginos and Higgsinos also receives con-
tributions from these three sources. In this case, all four of the states

(̃b, w̃0, h̃0
d, h̃

0
u) (11.182)
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have the same quantum numbers after SU(2)×U(1) breaking and can mix
together. The mass matrix is

mN =


m1 0 −mZcβsw mZsβsw

0 m2 mZcβcw −mZsβcw
−mZcβsw mZcβcw 0 −µ
mZsβsw −mZsβcw −µ 0

 . (11.183)

The mass eigenstates in these systems are referred to collectively as
charginos and neutralinos. The matrix (11.183) is complex symmetric, so
it can be diagonalized by a unitary matrix V0,

Note that this formula is different from that which diagonalizes a Hermi-
tian matrix. A detailed discussion of the diagonalization of mass matrices
appearing in SUSY can be found in the Appendix of [56].

mN = V ∗
0 DNV

†
0 . (11.184)

I will denote the neutralinos as Ñ0
i , i = 1, . . . , 4, in order of mass with Ñ0

1

the lightest. Elsewhere in the literature, you will see these states called
χ̃0

i or Z̃0
i . The mass eigenstates are related to the weak eigenstates by the

transformation 
b̃0

w̃0

h̃0
d

h̃0
u

 = V0


Ñ1

Ñ2

Ñ3

Ñ4

 . (11.185)

Note that the diagonal matrix DN in (11.184) may have negative or
complex-valued elements. If that is true, the physical fermion masses of
the Ñi are the absolute values of the corresponding elements of DN . The
phases will appear in the three-point couplings of the Ñi and can lead to
observable interference effects. Complex phases in DN would provide a new
source of CP violation.

The chargino mass matrix (11.181) is not symmetric, so in general it is
diagonalized by two unitary matrices

mC = V ∗
−DCV

†
+ . (11.186)

I will denote the charginos as C̃±
i , i = 1, 2, in order of mass with C̃±

1 the
lighter. Elsewhere in the literature, you will see these states called χ̃±i
or W̃±

i . The mass eigenstates are related to the weak eigenstates by the
transformation(

w̃+

h̃+
u

)
= V+

(
C̃+

1

C̃+
2

)
,

(
w̃−

h̃−u

)
= V−

(
C̃−

1

C̃−
2

)
. (11.187)
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It should be noted that µ are must be nonzero. If µ = 0, the determi-
nant of (11.183) vanishes and so the lightest neutralino must be massless.
This neutralino will also have a large Higgsino content and thus an order-1
coupling to the Z0. It is excluded by searches for an excess of invisible Z0

decays and for Z0 → Ñ1Ñ2. The condition µ = 0 also implies that the
lightest chargino has a mass below the current limit of about 100 GeV.

Often, one studies models for which m1, m2, and µ are all large com-
pared to mW and mZ . The off-diagonal elements that mix the gaugino
and Higgsino states are of the order of mW and mZ . Thus, if the scale of
masses generated by the SUSY breaking terms is large, the mixing is small
and the individual eigenstates are mainly gaugino or mainly Higgsino. How-
ever, there are two distinct cases. The first is the gaugino region, where
m1,m2 < |µ|. In this region of parameter space, the lightest states Ñ1, C̃1

are mainly gaugino, while the heavy neutralinos and charginos are mainly
Higgsino. In the Higgsino region, m1,m2 > |µ|, the situation is reversed
and Ñ1, C̃1 are mainly Higgsino. In this case, the two lightest neutralinos
are almost degenerate. In Fig. 11.8, I show the mass eigenvalues as a func-
tion of the mass matrix parameters along a line in the parameter space on
which the Ñ1 has a fixed mass of 100 GeV. As we will see in Section 6.4,
the exact makeup of the lightest neutralino as a mixture of gaugino and
Higgsino components is important to the study of supersymmetric dark
matter.

To summarize this discussion, I present in Fig. 11.9 the complete spec-
trum of new particles in the MSSM at a representative point in its param-
eter space. Notice that the third-generation sfermions are split off from
the others in each group. Note also that the parameter point chosen is in
the gaugino region. The lightest superparticle is the Ñ1. I will discuss the
spectrum of Higgs bosons in Section 6.2.

11.4.3. Renormalization Group Evolution of MSSM Parameters

The spectrum shown in Fig. 11.9 appears to have been generated by
assigning random values to the soft SUSY breaking parameters. But, actu-
ally, I generated this spectrum by making very simple assumptions about
the relationships of the soft parameters, at a high energy scale. Specifically,
I assumed that the soft SUSY breaking gaugino masses and (separately)
the sfermion masses were equal at the scale of grand unification. The struc-
ture that you see in the figure is generated by the renormalization group
evolution of these parameters from the grand unification scale to the weak
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Fig. 11.8.: Masses of the four neutralinos and two charginos along a line in the
SUSY parameter space on which m( eN0

1 ) = 100 GeV while the parameter µ moves
from large negative to large positive values. The parameter m1 is set to m1 =
0.5m2. Note the approximate degeneracies in the extreme limits of the gaugino
and Higgsino regions.

scale.
The renomalization group (RG) evolution of soft parameters is likely

to play a very important role in the interpretation of measurements of the
SUSY particle masses. Essentially, after measuring these masses, it will be
necessary to decode the results by running the effective mass parameters
up to a higher energy at which their symmetries might become more appar-
ent. The situation is very similar to that of the Standard Model coupling
constants, where a renormalization group analysis told us that the appar-
ently random values (11.137) for the coupling constants at the weak scale
actually corresponds to a unification of couplings at a much higher scale.

In this section, I will write the most basic RG equations for the soft
gaugino and sfermion masses. One further effect, which involves the Yukawa
couplings and is important for the third generation, will be discussed later
in Section 6.1.

The RG equation for the gaugino masses is especially simple. This
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Fig. 11.9.: Illustrative spectrum of supersymmetric particles. The columns con-
tain, from the left, the Higgs bosons, the four neutralinos, the two charginos, the
charged sleptons, the sneutrinos, the down squarks, and the up squarks. The
gluino, not shown, is at about 800 GeV.

is because both the gaugino masses and the gauge couplings arise from
the superpotential term (11.115), with the supersymmetry breaking terms
arising as shown in (11.159). As I have already noted, this F-term receives
a radiative correction proportional to the β function as a consequence of the
trace anomaly [34,36]. The corrections are the same for the gauge boson
field strength and the gaugino mass. Thus, if gaugino masses and couplings
are generated at the scale M , they have the relation after RG running to
the scale Q:

mi(Q)
mi(M)

=
αi(Q)
αi(M)

. (11.188)

If the F term that generates the soft gaugino masses is an SU(5) singlet,
the soft gaugino masses will be grand-unified at M . Then, running down
to the weak scale, they will have the relation

m1 : m2 : m3 = α1 : α2 : α3 = 0.5 : 1 : 3.5 . (11.189)

This relation of soft gaugino masses is known as gaugino unification.
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There are other models of the soft gaugino masses that also lead to
gaugino unification. In gauge-mediated SUSY breaking, the dynamics re-
sponsible for SUSY breaking occurs at a scale much lower than the scale as-
sociated with mediation by supergravity. At this lower scale Mg (for exam-
ple, 1000 TeV), some heavy particles with nontrivial SU(3)×SU(2)×U(1)
quantum numbers acquire masses from SUSY breaking. These fields then
couple to gauginos and generate SUSY breaking masses for those particles
through the diagram shown in Fig. 11.10(a). The heavy particles must
fall into complete SU(5) representations; otherwise, the coupling constant
renormalization due to these particles between Mg and the grand unifica-
tion scale would spoil the grand unification of the gauge couplings. Then
the diagram in Fig. 11.10(a) generates soft gaugino masses proportional to
α(Mg). Running these parameters down to the weak scale, we derive the
relation (11.189) from this rather different mechanism.

Fig. 11.10.: Diagrams that generate the soft mass parameters in gauge mediated
supersymmetry breaking: (a.) gaugino masses; (b.) sfermion masses.

Now let us turn to the RG running of soft scalar masses. In principle,
there are two contributions, one from the RG rescaling of the soft mass
term M2

f and one from RG evolution generating M2
f from the gaugino

mass. The Feynman diagrams that contribute to the RG coefficients are
shown in Fig. 11.11. The two one-loop diagrams proportional to M2

f cancel.
The third diagram, involving the gaugino mass, gives the RG equation

dM2
f

d logQ
= − 2

π

∑
i

αi(Q)C2(ri)m2
i (Q) , (11.190)

with i = 1, 2, 3 and C2(ri) the squared charge in the fermion representation
ri under the gauge group i. This equation leads to a positive contribution
to M2

f as one runs the RG evolution from the messenger scale down to the
weak scale. The effect is largest for squarks, for which the SUSY breaking
mass is induced from the gluino mass.

As an example of this mechanism of mass generation, assume gaugino
unification and assume that M2

f = 0 for all sfermions at the grand unifica-
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Fig. 11.11.: Diagrams that generate the renormalization group evolution of the
soft sfermion mass parameters M2

f .

tion scale. Then the weak scale sfermion masses will be in the ratio

M(ẽ) : M(ẽ) : M(d̃) : M(ũ) : M(d̃, ũ) : m2

= 0.5 : 0.9 : 3.09 : 3.10 : 3.24 : 1 (11.191)

This model of fermion mass generation is called no-scale SUSY breaking. It
has the danger that the lightest stau mass eigenstate could be lighter than
than the Ñ1, leading to problems for dark matter. This problem can be
avoided by RG running above the GUT scale [57]. Alternatively, it might
actually be that the lightest Standard Model superpartner is a long-lived
stau that eventually decays to a tau and a gravitino [58,59].

In gauge-mediated SUSY breaking, the diagram shown in Fig. 11.10(b)
leads to the qualitatively similar but distinguishable formula

M2
f = 2

∑
i

α3
i (M)C2(ri) ·

(
m2

α2

)2

. (11.192)

Each model of SUSY breaking leads to its own set of relations among
the various soft SUSY breaking parameters. In general, the relations are
predicted for the parameters defined at the messenger scale and must be
evolved to the weak scale by RG running to be compared with experiment.
Fig. 11.12 shows four different sets of high-scale boundary conditions for
the RG evolution, and the corresponding evolution to the weak scale. If we
can measure the weak-scale values, we could try to undo the evolution and
recognize the pattern. This will be a very interesting study for the era in
which superparticles are observed at high energy colliders.

There are some features common to these spectra that are general fea-
tures of the RG evolution of soft parameters:

(1) The pairs of sleptons ẽ and ẽ can easily acquire a significant mass
difference from RG evolution, and they might also have a different
initial condition. It is important to measure the mass ratio m(ẽ)/m(ẽ)
as a diagnostic of the scheme of SUSY breaking.



March 24, 2008 11:31 World Scientific Review Volume - 9in x 6in peskin˙ws

Supersymmetry in Elementary Particle Physics 677

Fig. 11.12.: Evolution of squark and slepton masses from the messenger scale
down to the weak scale, for four different models of supersymmetry breaking:
(a.) universal sfermion masses at the grand unification scale MU ; (b.) sfermion
masses at MU that depend on the SU(5) representation; (c.) universal sfermion
masses at an intermediate scale; (d.) gauge mediation from a sector of mass about
1000 TeV.

(2) Gaugino unification is a quantitative prediction of certain schemes of
SUSY breaking. It is important to find out whether this relation is
correct or not for the real spectrum of superparticles in Nature.

(3) When the RG effects on the squark masses dominate the values of M2
f

from the initial condition, the various species of squark have almost the
same mass and are much heavier than the sleptons. It is important to
check whether most or all squarks appear at the same threshold.

11.5. The Measurement of Supersymmetry Parameters

11.5.1. Measurements of the SUSY Spectrum at the ILC

Now that we have discussed the physics that determines the form of
the spectrum of superparticles, we turn to the question of how we would
determine this spectrum experimentally. This is not as easy as it might
seem. In this section, I will consider only models in which the dark matter
particle is the Ñ1, and all other SUSY particles decay to the Ñ1. This
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neutral and weakly interacting particle would escape a collider detector
unseen. Nevertheless, methods have been worked out not only to measure
the masses of superparticles but also to determine mixing angles and other
information needed to convert these masses to values of the underlying
parameters of the MSSM Lagrangian.

Similar methods apply to other scenarios. For example, in models in
which the neutralino decays to a particle with gravitational interactions,
one would add that decay, if it is visible, to the analyses that I will present.
It is possible in models of this type that the lightest Standard Model su-
perpartner would be a charged slepton that is stable on the time scale of
particle physics experiments. That scenario would produce very striking
and characteristic events [58].

Most likely, this experimental study of the SUSY spectrum will begin
in the next few years with the LHC experiments. However, at a hadron
collider like the LHC, much of the kinematic information on superparticle
production is missing and so special tricks are needed even to measure the
spectrum. The study of supersymmetry should be much more straightfor-
ward at an e+e− collider such as the planned International Linear Collider
(ILC). For this reason, I would like to begin my discussion of the experi-
ments in this section by discussing SUSY spectrum measurements at e+e−

colliders. More complete reviews of SUSY measurements at linear colliders
can be found in [60,61].

I first discuss slepton pair production, beginning with the simplest pro-
cess, e+e− → µ̃+µ̃− and considering successively the production of τ̃ and ẽ.
Each step will bring in new complexities and will allow new measurements
of the SUSY parameters.

The process e+e− → µ̃+µ̃−, where µ̃ is the partner of either the left-
or right-handed µ, can be analyzed with the simple formulae for scalar
particle-antiparticle production. The cross section for pair production from
polarized initial electrons and positrons to final-state scalars with definite
SU(2)× U(1) quantum numbers is given by

dσ

d cos θ
=
πα2

2s
β3 sin2 θ |fab|2 , (11.193)

where

fab = 1 +
(I3

e + s2w)(I3
µ + s2w)

c2ws
2
w

s

s−m2
Z

(11.194)

and, in this expression, I3 = − 1
2 , 0 for a, b = L,R. For the initial state,

a = L denotes the state e−Le
+
R and a = R denotes e−Re

+
L . For the final state,
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b = L denotes the µ̃, b = R the µ̃. Notice that this cross section depends
strongly on the polarization states:

|fab|2 = 1.69 e−Re
+
L → µ̃

+
µ̃
−

= 0.42 e−Le
+
R → µ̃

+
µ̃
−

= 0.42 e−Re
+
L → µ̃+µ̃−

= 1.98 e−Le
+
R → µ̃+µ̃− (11.195)

The angular distribution is characteristic of pair-production of a spin 0
particle; the normalization of the cross sections picks out the the correct
set of SU(2)× U(1) quantum numbers.

If the smuon is light, its only kinematically allowed decay might be
µ̃ → µÑ0

1 . Even if the smuon is heavy, if the Ñ1 is mainly gaugino, this
decay should be important. As noted above, I am assuming that R-parity
is conserved and that the Ñ1 is the lightest particle in the superparticle
spectrum. Then events with this decay on both sides will appear as

e+e− → µ+µ− + (missing E and p) (11.196)

The spectrum of the observed muons is very simple. Since the µ̃ has spin
0, it decays isotropically in its own rest frame. In e+e− production at a
definite center of mass energy, the µ̃ is produced at a definite energy, and
thus with a definite boost, in the lab. The boost of an isotropic distribution
is a flat distribution in energy. So, the muon energy distribution should be
flat, between endpoints determined by kinematics, as shown in the idealized
Fig. 11.13.

Fig. 11.13.: Schematic energy distribution of final-state muons in e+e− → eµ+eµ−.

The endpoint positions are simple functions of the mass of the µ̃ and



March 24, 2008 11:31 World Scientific Review Volume - 9in x 6in peskin˙ws

680 Michael E. Peskin

Fig. 11.14.: Energy distribution of muons from e+e− → eµ−eµ+
at the ILC, in a

simulation by Blair and Martyn that includes realistic momentum resolution and
beam effects [63].

the mass of the Ñ1,

E± = γ(1± β)
m2(µ̃)−m2(Ñ1)

2m(µ̃)
, (11.197)

where γ = ECM/2m(µ̃), β = (1−4m2(µ̃)/E2
CM)1/2. If we can identify both

endpoint positions, we can solve for the two unknown masses. Figure 11.14
shows a simulation of the reconstructed smuon energy distribution from µ̃

pair production at the ILC [63]. The high-energy edges of the distributions
are rounded because of initial-state radiation in the e+e− collision. The
experimenters expect to be able to measure this effect and correct for it.
Then they should obtain values of the smuon mass to an accuracy of about
one hundred MeV, or one part per mil.

A similar analysis applies to e+e− → τ̃+τ̃−, but there are several com-
plications. First, for the τ system, mixing between the τ̃ and the τ̃ might
be important, especially if tanβ is large. The production cross sections
are affected directly by the mixing. For example, to compute the pair-
production of the lighter τ̃ mass eigenstate from a polarized initial state,
e−Re

+
L → τ̃−1 τ̃

+
1 , we must generalize (11.193) to

dσ

d cos θ
=
πα2

2s
β3 sin2 θ |fR1|2 , (11.198)

where

fR1 = fRR cos2 θτ + fRL sin2 θτ (11.199)
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and θτ is the mixing angle associated with the diagonalization of the τ̃ case
of (11.176).

Second, while the τ̃
−

can decay to τ−R b̃ through gauge couplings, this
weak eigenstate can also decay to τ−L h̃d through terms proportional to the
Yukawa coupling. Both decay amplitudes contribute to the observable de-
cay τ̃1 → τÑ0

1 . With the τ̃ mixing angle fixed from the measurement
of the cross section, the τ polarization in τ̃ decays can be used to deter-
mine the mixing angles in the diagonalization of the neutralino mass matrix
(11.183) [62].

Fig. 11.15.: Energy distribution of the three-pion system from e+e− → eτ−1 eτ+
1 at

the ILC, with a τ decay to 3π, in a simulation by Blair and Martyn that includes
realistic momentum resolution and beam effects. [63].

In Fig. 11.15, I show the distribution of total visible energy in τ̃ →
3π + ν + Ñ0

1 at the ILC. Though there is no longer a sharp feature at the
kinematic endpoint, it is still possible to accurately determine the τ̃ mass
by fitting the shape of this distribution.

The physics of e+e− → ẽ+ẽ− brings in further new features. In this
case, there is a new Feyman diagram, involving t-channel neutralino ex-
change. The two diagrams contributing to the cross section for this process
are shown in Fig. 11.16. The t-channel diagram turns out to be the more
important one, dominating the s-channel gauge boson exchange and gen-
erating a large forward peak in selectron production. The cross section for
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e−Re
+
L → ẽ

−
ẽ
+

is given by another generalization of (11.193),

dσ

d cos θ
=
πα2

2s
β3 sin2 θ |FRR|2 , (11.200)

where

FRR = fRR −
∑

i

∣∣∣∣V01i

cw

∣∣∣∣2 s

m2
i − t

, (11.201)

with the sum running over neutralino mass eigenstates. The factor V01i is
a matrix element of the unitary matrix introduced in (11.184).

Fig. 11.16.: Feynman diagrams contributing to e+e− → ee−ee+.

The t-channel diagram also allows new processes such as e−Le
+
L → ẽ−ẽ

+
.

Note the correlation of the initial-state electron and position spins with the
identities of the final-state selectrons. A complete set of polarized cross
sections for selectron pair production in e+e− and e−e− collisions can be
found in [64].

The cross sections for chargino and neutralino pair production in e+e−

collisions are somewhat more complicated, but still there are interesting
things to say about these processes. Chargino pair production is given by
the Feynman diagrams shown in Fig. 11.17. These diagrams are just the
supersymmetric analogues of the diagrams for e+e− →W+W−. As in that
process, the most charcteristic final states are those with a hadronic decay
on one side of the event and a leptonic decay on the other side, for example,

C̃+
1 → `+νÑ0

1 , C̃−
1 → duÑ0

1 . (11.202)

A typical event of this kind is shown in Fig. 11.18.
The chargino and neutralino production cross sections have a strong de-

pendence on the mixing angles in (11.184) and (11.186) and offer a number
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Fig. 11.17.: Feynman diagrams contributing to e+e− → eC−
i

eC+
j .

Fig. 11.18.: A simulated chargino pair production event at the ILC [65].

of strategies for the determination of these mixing angles. Let me present
one such strategy here. Consider the reaction from a polarized initial state
e−Re

+
L → C̃−

1 C̃
+
1 . Since we have an initial e−R, the t-channel diagram vanishes

because the right-handed electron does not couple to the neutrino. Now
simplify the s-channel diagram by considering the limit of high energies,
s� m2

Z . In this limit, it is a good approximation to work with weak gauge
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eigenstates (B0,W 0) rather than the mass eigenstates (γ, Z0). The weak
eigenstate basis gives a nice simplification. The initial e−R couples only to
B0. But w̃± couple only to W 0, so at high energy the s-channel diagram
gets contributions only from the Higgsino components of the C̃−

1 and C̃+
1

eigenstates. If we go to still higher energies, s� m(C̃1)2, there is a further
simplification. The cross section for h̃−Rh̃

+
L production is forward-peaked,

and the cross section for h̃−L h̃
+
R production is backward-peaked. Then, the

cross section for e−Re
+
L → C̃−

1 C̃
+
1 takes the form

dσ

d cos θ
∼ πα2

8c2ws
[
|V+21|4(1 + cos θ)2 + |V−21|2(1− cos θ)2

]
. (11.203)

In this limit, it is clear that we can read off both of the mixing angles in
(11.186) from the shape of this cross section.

The use of high-energy limits simplified this analysis, but the sentivity
of this cross section to the chargino mixing angles is not limited to high
energy. Even relatively close to threshold, the polarized cross sections for
chargino production depend strongly on the chargino mixing angles and can
be used to determine their values. In Fig. 11.19, I show contours of constant
cross section for e−Re

+
L → C̃−

1 C̃
+
1 in the (m2, µ) plane (for tanβ = 4 and

assuming gaugino unification) [66]. The value of this cross section is always
a good measure of whether the SUSY parameters in Nature put us in the
gaugino or the Higgsino region of Fig. 11.8.

11.5.2. Observation of SUSY at the LHC

Now we turn to supersymmetry production processes at the LHC. This
subject, though more difficult, has immediate importance, since the LHC
experiments are just about to begin.

The reactions that produce superparticles are typically much more com-
plicated at hadron colliders than at lepton colliders. This is true for several
reasons. High energy collisions of hadrons are intrinsically more compli-
cated because the final states include the fragments of the initial hadrons
that do not participate in the hard reaction. More importantly, the dom-
inant reactions at hadron colliders are those that involve strongly inter-
acting superparticles. This means that the primary particles are typically
the heavier ones in the spectrum, which then decay in several steps. In
addition, large backgrounds from QCD obscure the signatures of super-
symmetric particle production in many channels.

Because of these difficulties, there is some question whether SUSY par-
ticle production can be observed at the LHC. However, as I will explain,
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Fig. 11.19.: Contours of constant cross section for the process e−Re+
L → C−

1 C+
1 (in

fb, for ECM = 500 GeV), as a function of the underlying SUSY parameters [66].
The region shown is that in which the lightest chargino mass varies from 50 to
200 GeV. For fixed eC+

1 mass, the cross section increases from zero to about 150
fb as we move from the gaugino region into the Higgsino region.

the signatures of supersymmetry are still expected to be striking and char-
acteristic. It is not so clear, though, to what extent it is possible to measure
the parameters of the SUSY Lagrangian, as I have described can be done
from ILC experiments. This is an important study that still offers much
room for new ideas.

The discovery of SUSY particles at the LHC and the measurement of
SUSY parameters has been analyzed with simulations at a number of pa-
rameter points. Collections of interesting studies can be found in [63,67,68].

The dominant SUSY production processes at the LHC are

gg → g̃g̃ , q̃q̃∗ gq → g̃q̃ (11.204)

These cross sections are large—tens of pb in typical cases. The values
of numerous SUSY production cross sections at the LHC are shown in
Fig. 11.20 [70].

We have seen that the squarks and gluinos are typically the heaviest
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Fig. 11.20.: Cross sections for the pair-production of supersymmetric particles at
the LHC, from [70].

particles in the supersymmetry spectrum. The gluinos and squarks thus
will decay to lighter superparticles. Some of these decays are simple, e.g.,

q̃ → qÑ0
1 . (11.205)

However, other decays can lead to complex decay chains such as

q̃ → qN0
2 → q(`+`−)Ñ0

1 , g̃ → udC+
1 → udW+Ñ0

1 . (11.206)

With the assumptions that R-parity is conserved and that the N0
1 is

the LSP, all SUSY decay chains must end with the N0
1 , which is stable

and very weakly interacting. SUSY production processes at hadron collid-
ers then have unbalanced visible momentum, accompanied by multiple jets
and, possibility, isolated leptons or W and Z bosons. Momentum balance
along the beam direction cannot be checked at hadron colliders, because
fragments of the initial hadrons exit along the beam directions, but an im-
balance of transverse momentum will be visible and can be a characteristic
signature of new physics. SUSY events contain this signature and the gen-
eral large activity characteristic of heavy particle production. A simulated
event of this type is shown in Fig. 11.21.
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Fig. 11.21.: Simulated SUSY particle production event in the CMS detector at
the LHC [69].

Figure 11.22 shows a set of estimates given by Tovey and the ATLAS
collaboration of the discovery potential for SUSY as a function of the LHC
luminosity [71]. The most important backgrounds come from processes that
are themselves relatively rare Standard Model reactions with heavy particle
production,

pp→ (W,Z, tt) + jets . (11.207)

With some effort, we can experimentally normalize and control these back-
grounds and reliably discovery SUSY production as a new physics process.
In the figure, the contours for 5σ excesses of events above these backgrounds
for various signatures of SUSY events are plotted as a function of the so-
called ‘mSUGRA’ parameters. The SUSY models considered are defined as
follows: Assume gaugino unification with a universal gaugino mass m1/2 at
the grand unification scale. Assume also that all scalar masses, including
the Higgs boson mass parameters, are unified at the grand unification scale
at the value m0. Assume that the A parameter is universal at the grand
unification scale; in the figures, the value A = 0 is used. Fix the value
of tanβ at the weak scale. Then it is possible to solve for µ and B, up
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to a sign, from the condition that electroweak symmetry is broken in such
a way as to give the observed value of the Z0 mass. (I will describe this
calculation in Section 6.1.) This gives a 4-parameter subspace of the full
24-dimensional parameter space of the CP- and flavor-conserving MSSM,
with the parameters

m0 , m1/2 , A , tanβ , sign(µ) . (11.208)

This subspace is often used to express the results of phenomenological anal-
yses of supersymmetry. In interpreting such results, one should remember
that this choice of parameters is used for simplicity rather than being mo-
tivated by physics.

The figure shows contours below which the various signatures of su-
persymmetry significantly modify the Standard Model expectations. For
clarity, the contours of constant squark and gluino mass are also plotted.
The left-hand plot shows Tovey’s results for the missing transverse momen-
tum plus multijets signature at various levels of LHC integrated luminosity.
It is remarkable that, in the models in which the squark or gluino mass is
below 1 TeV, SUSY should be discoverable with a data sample equivalent
to a small fraction of a year of running. The right-hand plot shows the
contours for the discovery of a variety of SUSY signals, with up to three
leptons plus jets plus missing transverse momentum, with roughly one year
of data at the initial design luminosity. The signals are, as I have described,
relatively robust with repect to uncertainties in the Standard Model back-
grounds. This makes it very likely that, if SUSY is really present in Nature
as the explanation of electroweak symmetry breaking, we will discover it at
the LHC.

The general characteristics of SUSY events also allow us to estimate the
SUSY mass scale in a relatively straightforward way. In Fig. 11.23, I show
a correlation pointed out by Hinchliffe and collaborators [72] between the
lighter of the squark and gluino masses and the variable

Meff =6ET +
4∑
1

ETi (11.209)

given by the sum of the transverse momenta of the four highest ET jets to-
gether with the value of the missing transverse momentum. The correlation
applies reasonably well to mSUGRA models. In other models with smaller
mass gaps between the squarks and the lightest neutralino, this relation
can break down, but Meff still measures the mass difference between the
squark or gluino and the Ñ0

1 [73]. Some more sophisticated techniques for
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Fig. 11.22.: Estimates by the ATLAS collaboration of the observability of various
signatures of SUSY at the LHC. The plots refer to models with grand unification
and universal sfermion and gaugino masses M0 and M1/2. The left-hand plot
shows the region of this parameter space in which it is possible to detect the
signature of missing ET plus multiple jets at various levels of integrated luminos-
ity. The right-hand plot shows the region of this parameter space in which it is
possible to detect an excess of events with one or more leptons in addition to jets
and missing ET [71].

determining mass scales in SUSY models from global kinematic variables
are described in [74].

11.5.3. Measurements of the SUSY Spectrum at the LHC

So far, I have only discussed the observation of the qualitative features
of the SUSY model from global measures of the properties of events. Now I
would like to give some examples of analyses in which specific details of the
SUSY spectrum are measured with precision at the LHC. The examples
that I will discuss involve the decay chain

q̃ → qÑ0
2 , Ñ0

2 → Ñ0
1 `

+`− , (11.210)

which is typically seen in models in which the gluino is heavier than the
squarks and the LSP is gaugino-like.



March 24, 2008 11:31 World Scientific Review Volume - 9in x 6in peskin˙ws

690 Michael E. Peskin

Fig. 11.23.: Correlation between the value of the observable (11.209) and the
lighter of the squark and gluino masses, from [72].

The decay of the N0
2 can proceed by any of the mechanisms:

Ñ0
2 → `± + ˜̀∓ , ˜̀∓ → `∓Ñ0

1

Ñ0
2 → Ñ0

1Z
0 , Z0 → `+`−

Ñ0
2 → Ñ0

1Z
0∗ , Z0∗ → `+`− . (11.211)

The last line indicates a virtual Z0, decaying off-shell. In a model with
gaugino unification and heavy Higgsinos, Ñ2 is mainly w̃0 and Ñ1 is mainly
b̃0. Then these modes are preferred in the order listed as long as they are
kinematically allowed. If the slepton decay is allowed, this is the domi-
nant model. Otherwise, the decay to Ñ1Z

0 or other open two-body decays
dominate. If no two-body decays are open, the Ñ2 must decay through
three-body processes such as the last line of (11.211).

The decay to an on-shell Z0 is hard to work with [75], but the other
two cases can be explored in depth. It is useful to begin with the Dalitz
plot associated with the 3-body (Ñ1, `

+, `−) system. Let

x0 =
2E(Ñ1)

m(Ñ2)
, x+ =

2E(`+)

m(Ñ2)
, x− =

2E(`−)

m(Ñ2)
, (11.212)
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Fig. 11.24.: The Dalitz plot describing 3-body neutralino decays, eN0
2 → eN0

1 `+`−.

where the energies are measured in the rest frame of the N2. The three
variables are related by

x0 + x1 + x2 = 2 . (11.213)

The three-body decay phase space is given by∫
dΠ3 =

m2(Ñ2)
128π3

∫
dx+ dx− ; (11.214)

that is, phase space is flat in the variables (11.212). The basic kinematic
identities involving the Dalitz plot variables are straightforward to work
out, especially if we ignore the masses of the leptons. The kinematically
allowed region is a wedge of the (x+, x−) plane bounded by the curves

x+ + x− = 1− (m(Ñ1)/m(Ñ2))2

(1− x+)(1− x−) = (m(Ñ1)/m(Ñ2))2 , (11.215)

as shown in Fig. 11.24(a). The invariant masses of two-body combinations
are given in terms of the xa by

m2(Ñ1`
±)

m2(Ñ2)
= (1− x∓) ,

m2(`+`−)

m2(Ñ2)
= (1− m(Ñ1)2

m(Ñ2)2
) . (11.216)
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I am assuming that the Ñ1 is stable and weakly interacting. In this case,
the Ñ1 will not be observed in the LHC experiments, and also the frame of
the Ñ2 cannot be readily determined. The only property of this system that
is straightforward to measure is the two-body invariant mass m(`+`−). So
it is interesting to note that the distribution of this quantity distinguishes
the first and third cases in (11.211), in the manner shown in Fig. 11.24(b).
In the case of a two-body decay to an intermediate slepton, the decays
populate two lines on the Dalitz plot, leading to a sharp discontinuity at
the kinematic endpoint. In the case of a three-body decay, the events
fill the whole Dalitz plot, producing a distribution with a slope at the
endpoint. With a good understanding of the detector resolution in the
dilepton invariant mass, these cases can be distinguished experimentally.

In the three-body case, the endpoint of the dilepton mass distribution
is exactly

m(Ñ2)−m(Ñ1) , (11.217)

so the observable mass distribution gives a precise measurement of this
SUSY mass difference. The shape of the spectrum has more information.
For example, for heavy slepton masses, the shape is distinctly different
for gaugino-like or Higgsino-like neutralinos. Figure 11.25(a) shows the
dilepton mass distribution for an mSUGRA parameter set for which the
lightest two neutralinos are gaugino-like [72]. Figure 11.25(b) shows this
distribution for a parameter set in which the two lightest neutralinos are
Higgsino-like [73].

At the endpoint, the dilepton mass is maximal, and this requires that
both the dilepton pair and the N1 are at rest in the frame of the N2. By
measuring the four-vectors of the leptons, we would then know the N1 and
N2 four-vectors, up to knowledge of the N1 mass. It is possible to obtain
this mass approximately from other measurements, for example, from the
kinematics of q̃ decays directly to N1. With this information, we could
determine the N2 four-vector. Now the problem of missing momentum is
solved. By adding observed jets to the N2 four-vector, it is possible to find
squarks as resonances [72]. Figure 11.26 shows the result of such an analysis
for the SUSY parameter set of Fig. 11.25. The peak just below 300 GeV is
a reconstructed b̃ squark.

The two-body case of Ñ2 decay is even nicer. In this case, we can see
from the right-hand figure in Fig. 11.24(b) that the endpoint of the dilepton
mass distribution is not located at the mass difference (11.217) but instead
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at the smaller value

m(`+`−) = m(Ñ2)

√
1− m2(˜̀)

m2(Ñ2)

√
1− m2(Ñ1)

m2(˜̀) . (11.218)

Figure 11.27 shows an example of the dilepton spectrum from a SUSY
parameter point in this region [63] The decay q̃ → qN2 is also a two-
body decay, and there are similar kinematic relations for the upper and
lower endpoints of the (q`) and (q``) invariant mass distributions. These
endpoints are likely to be visible in the collider data. Figure 11.28 shows
two jet-lepton mass distributions from a similar analysis presented in [76].
In that analysis, it was possible to identify five well-measured kinematic
endpoints, from which it was possible to solve (in an overdetermined way)
for the four masses m(N1), m(˜̀), m(N2), m(q̃).

There is one more case of an Ñ2 → Ñ1 decay that should be mentioned.
If two-body decays of Ñ2 to sleptons are not kinematically allowed but
the decay to Ñ1h

0 is permitted, this decay to a Higgs boson will be the
dominant Ñ2 decay. In this case, supersymmetry can provide a copious
source of Higgs bosons. Figure 11.29 shows an analysis of a SUSY model
in this parameter region [67]. Events with multijets and missing transverse
energy are selected. In this sample, the mass distribution of two b-quark-
tagged jets is shown. The signature of SUSY selects a sample of events in
which the Higgs boson is visible in its dominant decay to bb.

There is much more to say about the measurement of SUSY parameters
at the LHC. Some more sophisticated sets of variables are introduced and
applied in [76,77]. The question of measuring the spins of superparticles is
discussed in [78–81]. And, we have not touched on alternative possibilities
for the realization of SUSY, with R-parity violation or charged superpar-
ticles that are observed in the LHC experiments as stable particles. A
broader overview of SUSY phenomenology at the LHC can be found in the
references cited at the beginning of this section.

11.6. Electroweak Symmetry Breaking and Dark Mat-
ter in the MSSM

11.6.1. Electroweak Symmetry Breaking in the MSSM

In Section 1.2, I motivated the introduction of SUSY with the claim
that SUSY could give an explanation of electroweak symmetry breaking,
and for the presence of weakly interacting dark matter in the universe. Now
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that we have a detailed understanding of the structure of the MSSM, it is
time to come back and discuss these issues.

To present the mechanism of electroweak symmetry breaking in the
MSSM, I need to add a term to one of the equations that I derived in
Section 4.3. In (11.190), I presented the RG equation for the soft SUSY
breaking scalar mass parameters, including renormalization effects from
gauge interactions. I remarked that the contributions to this equation from
Higgs Yukawa couplings are small for the scalars of the first and second gen-
erations. However, for the scalars of the third generation, these corrections
can plan an important role.

The F -term interaction

L = −
∣∣ytHu · t̃

∣∣2 (11.219)

leads to a contribution to the RG equations for Mt, the mass parameter of
t̃, proportional to M2

Hu, from the diagram shown in Fig. 11.30. The value
of the diagram is

−iy2
t

∫
d4k

(2π)4
i

k2
(−iM2

Hu)
i

k2
=

i

(4π)2
y2

tM
2
Hu log Λ2 . (11.220)

A scalar self-energy diagram is interpreted as −iδm2, so this is a negative
contribution to M2

t . Each of the scalar fields (Hu, t̃, t̃) gives a similar con-
tribution that renomalizes the soft mass parameter of each of the others.
For each correction, there is a counting factor from the number of color or
SU(2) degrees of freedom that run around the loop. There is also a correc-
tion to each of the scalar masses from the top quark A term. We must also
remember that all of these terms add to the positive mass correction from
the gaugino loops in Fig. 11.11, of which the gluino loop correction is the
most important.

Taking all of these effects into account, we find for the RG equations of
the soft mass parameters of Hu, t, and t

dM2
t

d logQ
=

2
(4π)2

· 1 · y2
t [M2

t +M2
t +M2

Hu +A2
t ]−

8
3π
α3m

2
3 + · · ·

dM2
t

d logQ
=

2
(4π)2

· 2 · y2
t [M2

t +M2
t +M2

Hu +A2
t ]−

8
3π
α3m

2
3 + · · ·

dM2
Hu

d logQ
=

2
(4π)2

· 3 · y2
t [M2

t +M2
t +M2

Hu +A2
t ]m

2
3 + · · · (11.221)

The structure is very interesting. The three scalar fields Hu, t̃, and t̃

all receive negative corrections to their mass terms as these equations are
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integrated in the direction of decreasing logQ. If any of these mass terms
were to become negative, the corresponding field would have an instability
to develop a vacuum expectation value, and the symmetry of the MSSM
would be spontaneously broken. The symmetry-breaking we want is that
associated with 〈Hu〉 6= 0. However, it seems equally possible that we could
generate 〈̃t〉 6= 0, which would break color SU(3), or 〈t̃〉 6= 0, which would
break both SU(2) and SU(3).

If the three mass parameters have similar values at a high mass scale,
they race toward negative values according to (11.221). But Hu wins the
race, and so the theory predicts the symmetry breaking pattern that is the
one observed. In this way, the MSSM leads naturally to electroweak sym-
metry breaking and realizes the idea that electroweak symmetry breaking
is connected to the large value of the top quark-Higgs coupling.

11.6.2. Higgs Boson Masses in the MSSM

Once we expect that M2
u < 0 at the weak scale, we can work out the

details of the Higgs boson spectrum. First, we should write the potential
for the Higgs fields Hu, Hd. As in the discussion of Sections 4.1 and 4.2,
a number of terms need to be collected from the various pieces of the
Lagrangian. The F terms contriubute

VF = µ2(H0∗
u H0

u +H0∗
d H0

d) (11.222)

The D terms contribute

VD =
g2 + g′2

8
(H0∗

u H0
u −H0∗

d H0
d)2 (11.223)

The soft SUSY breaking terms contribute

Vsoft = M2
HuH

0∗
u H0

u +M2
HdH

0∗
d H0

d − (BµH0
uH

0
d + h.c.) (11.224)

The sum of these terms gives the complete tree-level Higgs potential. Differ-
entiating this potential with respect to H0

u and H0
d , we obtain the equations

that determine the Higgs field vacuum expectation values. If we write these
equations with the parametrization of the vacuum expectation values given
in (11.169), we find

µ2 +M2
Hu = Bµ cotβ +

1
2
m2

Z cos 2β

µ2 +M2
Hd = Bµ tanβ − 1

2
m2

Z cos 2β , (11.225)
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where m2
Z = (g2 + g′2)v2/4. This system of equations can be solved for µ

to give

µ2 =
M2

Hd − tan2 βM2
Hu

tan2 β − 1
− 1

2
m2

Z (11.226)

This is, for example, the way that we would determine µ in the mSUGRA
parameter space described in Section 5.2.

It is interesting to turn this equation around and write it as an equation
for mZ in terms of the SUSY parameters,

m2
Z = 2

M2
Hd − tan2 βM2

Hu

tan2 β − 1
− 2µ2 . (11.227)

From this equation, a small value of mZ would require a cancellation be-
tween the Higgs soft mass parameters and µ. The parameter µ sets the
mass scale of the Higgsinos, and the Higgs soft mass parameters might be
related to other masses of the SUSY scalar particles. Thus, if the masses of
the charginos and neutralinos and, perhaps also, the sleptons are not close
to mZ , that disparity must be associated with an apparently unnatural
cancellation between different SUSY parameters.

If we prohibit a delicate cancellation in (11.227), we put an upper bound
on the SUSY partner masses. To avoid cancellations in more than two dec-
imal places, µ must be less than 700 GeV. Similarly, we find bounds on the
Higgs soft masses, and on the parameters that contribute to these masses
through the RG equation. This consideration turns out to give a constraint
on the gluino mass, m3 < 800 GeV. Assuming gaugino universality, this
becomes a condition m2 < 250 GeV that restricts the chargino and neu-
tralino masses. A variety of similar naturalness arguments that constrain
the SUSY scale can be found in [82–84]. Though the logic is that of an
estimate rather than a rigorous bound, this analysis strongly supports the
idea that SUSY partners should be light enough to be discovered at the
LHC and at the ILC.

Once we have the Higgs potential and the conditions for the Higgs vac-
uum expectation values, we can work out the masses of the Higgs bosons
by expanding the potential around its minimum. A first step is to identify
the combinations of Higgs fields that correspond to physical Higgs bosons.
Look first at the charged Higgs bosons. There are two charged Higgs fields
in the multipletsHu, Hd. One linear combination of these fields is the Gold-
stone boson that is eaten by the W boson as it obtains mass through the
Higgs mechanism. The orthogonal linear combination is a physical charged
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scalar field. If we decompose

H+
u = cosβH+ + sinβG+

H−
d = sinβH− + sinβG− (11.228)

where H− = (H+)∗, G− = (G+)∗, and β is precisely the mixing angle in
(11.169), it can be seen that G± are the Goldstone bosons and H± are the
physical scalar states.

A similar analysis applies to the neutral components of H0
u and H0

d .
These are complex-valued fields. It is appropriate to decomposed them as

H0
u =

1√
2
(v sinβ + sinαH0 + cosαh0 + i cosβA0 + i sinβG0)

H0
d =

1√
2
(v cosβ + cosαH0 − sinαh0 + i sinβA0 − i cosβG0)(11.229)

The components H0, h0 are even under CP; the fields A0, G0 are odd
under CP. The componet G0 is the Goldstone boson eaten by the Z0. The
other three fields create physical scalar particles.

Having identified these fields, we can compute their masses. The for-
mulae for the Higgs masses take an especially simple form when they are
expressed in terms of the mass of the A0. For the charged Higgs boson

m2
H+ = m2

A +m2
W . (11.230)

For the CP-even scalars, one finds a mass matrix(
m2

A sin2 β +m2
Z cos2 β −(m2

A +m2
Z) sinβ cosβ

−(m2
A +m2

Z) sinβ cosβ m2
A cos2 β +m2

Z sin2 β

)
(11.231)

The physical scalar masses m2
h and m2

H are the eigenvalues of this matrix,
defined in such a way that m2

h < m2
H . The angle α in (11.229) is the mixing

angle that defines these eigenstates.
Taking the trace of (11.231), we find the relation

m2
h +m2

H = m2
A +m2

Z . (11.232)

We can also obtain an upper bound on the lighter Higgs mass m2
h by taking

the matrix element of (11.231) in the state (cosβ, sinβ). The bound is a
very strong one:

m2
h ≤ m2

Z cos2 β < m2
Z . (11.233)

This seems inconsistent with lower bounds on the Higgs boson mass from
LEP 2, which exclude mh < 114 GeV for the Standard Model Higgs and
for most scenarios of SUSY Higgs bosons [85].
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Some exceptional Higgs decay schemes that escape these bounds are
considered in [86,87]. However, the one-loop corrections to the tree-level
result (11.231) give a significant positive correction

δm2
h =

3
π

m4
t

m2
W

sin4 β log
metmet
m2

t

. (11.234)

This correction can move the mass of the h0 up to about 130 GeV. The
detailed summary of the radiative corrections to the h0 mass in the MSSM
is presented in [88]. A very clear and useful accounting of the major cor-
rections can be found in [89].

It is possible to raise the mass of the h0 by going outside the MSSM
and adding additional SU(2) singlet superfields to the model. However, this
strategy is limited by a general constraint coming from grand unification.
The requirement that the Higgs couplings do not become strong up to the
grand unification scale limit the mass of the Higgs to about 200 GeV [90].
It is possible to raise the mass of the Higgs further only by enlarging the
Standard Model gauge group or adding new thresholds that affect unifica-
tion [91,92].

In the MSSM, we can easily have the situation in which mA � mh. In
this limit, the couplings of the h0 are very close to those of the Standard
Model Higgs boson, and the H0, A0, and H± are almost degenerate. If
tanβ � 1, the heavy neutral Higgs bosons decay dominantly to bb and
τ+τ−.

Much more about the phenomenology of Higgs bosons in supersymmetry
can be found in [93,94].

11.6.3. WIMP Model of Dark Matter

Now we turn to the second problem highlighted in the Introduction,
the problem of dark matter in the universe. It has been known from many
astrophysical measurements that the universe contains enormous amounts
of invisible, weakly interacting matter. For an excellent review of the classic
astrophysical evidence for this dark matter, see [95].

In the past few years, measurements of the cosmic microwave back-
ground have given a new source of evidence for dark matter. Since this
data comes from an era in the early universe before the formation of any
structure, it argues strongly that the invisible matter is not made of rocks or
brown dwarfs but is actually a new, very weakly interacting form of matter.
These measurements also determine quite accurately the overall amount of
conventional and dark matter in the universe. Let ρb, ρN , and ρΛ be the
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large-scale energy densities of the universe from baryons, dark matter, and
the energy of the vacuum. The data from the microwave background tells
us that ρb + ρN + ρΛ = ρc, the ‘closure density’ corresponding in general
relativity to a flat universe, to about 1% accuracy. If Ωi = ρi/ρc, the most
recent data from the WMAP experiment and other sources gives [96,97]

Ωb = 0.042± 0.003 ΩN = 0.20± 0.02 ΩΛ = 0.74± 0.02 . (11.235)

These results present a double mystery. We do not know what particle the
dark matter is made of, and we do not have any theory that explains the
observed magnitude of the vacuum energy or ‘dark energy’.

I believe that supersymmetry will eventually play an essential role in
solving the problem of dark energy. In ordinary quantum field theory,
the value of the vacuum energy is quartically divergent, so the problem of
computing the vacuum energy is not even well-posed. In supersymmetry,
there is at least a well-defined zero of the energy associated with exact
supersymmetry, which implies 〈0|H |0〉 = 0. Unfortunately, in most of
today’s models of supersymmetry, the vacuum energy is set by the SUSY
breaking scale. This gives Λ ∼ (1011 GeV)4, about 80 orders of magnitude
larger than the observed value of the vacuum energy. From this starting
point, Λ must be fine-tuned to the scale of eV4. This is an important
problem that needs new insights which, however, I will not provide here.

On the other hand, supersymmetry offers a very definite solution to the
problem of the origin of dark matter. We have already noted in Section 3.4
that it is straightforward to arrange that the lightest supersymmetric par-
ticle can be absolutely stable. If this particle were produced in the early
universe, some density of this type of matter should still be present. In
most, but not all, regions of parameter space, the lightest supersymmetric
particle is neutral. Candidates include the lightest neutralino, the light-
est sneutrino, and the gravitino. In the remainder of these lectures, I will
concentrate on the case in which the lightest neutralino is the dark matter
particle. For a discussion of the other candidates, see [98].

To begin our discussion, I would like to estimate the cosmic density of
dark matter in a more general context. Let me make the following minimal
assumptions about the nature of dark matter, that the dark matter particle
is stable, neutral, and weakly interacting. To these properties, I would like
to add one more, that dark matter particles can be created in pairs at
sufficiently high temperature, and that, at some time in the early universe,
dark matter particles were in thermal equilibrium. I will refer to a particle
satisfying these assumptions as a ‘weakly interacting massive particle’ or
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WIMP. The assumption of thermal equilibrium is a strong one that is not
satisfied even in many models of supersymmetric dark matter. For some
exceptions, see [99,100]. However, let us see what implications follow from
these assumptions.

The assumption that WIMPs were once in thermal equilibrium provides
a definite initial condition from which to compute the current density of
dark matter. In thermal equilibrium at temperture T , we have for the
number density of dark matter particles

neq =
g

(2π)3/2
(mT )3/2e−m/T . (11.236)

where g is the number of spin degrees of freedom of the massive particle.
As the universe expands, the temperature of the universe deccreases and
the rate of WIMP pair production becomes very small. But the rate of
dark matter pair annihilation also becomes small as the WIMPs separate
from one another.

The expansion of the universe is governed by the Hubble constant H =
ȧ/a,where a is the scale factor. Einstein’s equations imply that

H2 =
8π
3

ρ

m2
Pl

. (11.237)

In a radiation-dominated universe where g∗ is the number of relativistic
degrees of freedom, ρ = π2g∗T

4/30. Then H is proportional to T 2. In
a radiation-dominated universe, the temperature red-shifts as the universe
expands, so that T ∼ a−1. Combining this relation with the equation
H = ȧ/a ∼ T 2, we find t ∼ T−2 ∼ a2, that is, a ∼ t1/2 or ȧ/a = 1/2t.
Setting this expression equal to the explict form of H in (11.237), we find
a detailed formula for the time since the start of the radiation-dominated
era for cooling to a temperature T ,

t =
(

16π3g∗
45

)−1/2
mPl

T 2
. (11.238)

The evolution of the WIMP density is described by the Boltzmann equa-
tion

dn

dt
= −3Hn− 〈σv〉 (n2 − n2

eq) , (11.239)

where H is the Hubble constant, σ is the ÑÑ annihilation cross section—
which appears thermally averaged with the relative velocity of colliding
WIMPs—and neq is the equilibrium WIMP density (11.236). Assume, just
for the sake of argument, that the temperature T is of the order of 100 GeV.
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At this temperature, the Hubble constant has the magnitude H ∼ 10−17T ,
so the expansion of the universe is very slow on the scale of typical ele-
mentary particle reactions. However, when T becomes less than the WIMP
mass m, the WIMP density is exponentially suppressed and so the collision
term in the Boltzmann equation is also very small. These two terms are of
the same size at the freezeout temperature TF satisfying

e−m/TF ∼ 1
mPlm 〈σv〉

. (11.240)

At temperatures below TF , we may neglect the production of WIMPs in
particle collisions. The WIMP density is then determined by the expansion
of the universe and the residual rate of WIMP pair annihilation. Maybe it
is more appropriate to think of TF as the temperature at which a WIMP
density is frozen in. To determine the freezeout temperature, we take the
logarithm of the right-hand side of (11.240). The result depends only on the
order of magnitude of the annihilation cross section. For any interaction of
electroweak strength,

ξF = TF /m ∼ 1/25 . (11.241)

This physical picture suggests a way to estimate the cosmic density
of WIMP dark matter. We can take as our initial condition the thermal
density of dark matter at freezeout. We then integrate the Boltzmann equa-
tion, ignoring the term proportional to n2

eq associated with the production
of WIMP pairs [102].

In analyzing the Boltzmann equation, it is useful normalize the particle
density n of dark matter to the density of entropy s. Since the universe
expands very slowly, this expansion is very close to adiabatic. Then entropy
is conserved,

ds

dt
= −3Hs . (11.242)

In a radiation-dominated universe, s = 2π2g∗T
3/45. Now define

Y =
n

s
, ξ =

T

m
, (11.243)

the latter as in (11.241). Using the expression (11.238), we can convert the
evolution in time to an evolution in temperature or in ξ. Applying these
changes of variables and dropping the n2

eq term, the Boltmann equation
(11.239) rearranges to the form

dY

dξ
= C 〈σv〉Y 2 , (11.244)
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where

C =
(πg∗

45

)1/2

mmPl . (11.245)

Let YF be the value of Y at ξ = ξF . If we assume that 〈σv〉 is approx-
imately constant, since we are at temperatures close to threshold, it is
straightforward to integrate this equation to ξ = 0, corresponding to late
times.

Y −1 = Y −1
F + CξF 〈σv〉 . (11.246)

The second term typically dominates the first. Then we can put back the
value of C in (11.245) and write the final answer in terms of the ratio of
the mass density of dark matter to the closure density ΩN = nmN/ρc. In
this way, we find

ΩN =
s0
ρc

(
45
πg∗

)1/2 1
ξFmPl

1
〈σv〉

, (11.247)

where s0 is the current entropy density of the universe. Turner and Scherrer
observed that this formula gives a value of ΩN that is usually within 10%
of the result from exact integration of the Boltzmann equation [102]. If
〈 sigmav〉 has a significant dependence on temperature, the derivation is
still correct with the replacement

ξ 〈σv〉 →
∫ ξf

0

dξ 〈σv〉 (ξ) (11.248)

in the denominator of the last term in (11.247).
This is a remarkable relation. Almost every factor in this relation is

known from astrophysical measurements. The left-hand side is given by
(11.235). On the right-hand side, the entropy density of the universe is
dominated by the entropy of the microwave background photons and can
be computed from the microwave background temperature. The closure
density is known from the measurement of the Hubble constant and the
observation that the universe is flat. The parameters g∗ and ξF are rel-
atively insensitive to the strength of the annihilation cross section, with
values g∗ ∼ 100, ξF ∼ 1/25. The mass of the WIMP does not appear
explicitly in (11.247). We can then solve for 〈σv〉. The result is

〈σv〉 = 1 pb . (11.249)

This is the value of a typical electroweak cross section at energies of a few
hundred GeV. If we convert this value to a mass M of an exchanged particle
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using the formula

〈σv〉 =
πα2

8M2
, (11.250)

the value (11.249) corresponds to M = 100 GeV.
I consider this a truly remarkable result. From a purely astrophysical

argument, relying on quite weak and general assumptions, we arrive at the
conclusion that there must be new particles at the hundred GeV energy
scale. It is probably not a concidence that this argument leads us back to
the mass scale of electroweak symmetry breaking.

In our study of supersymmetry, we have found an argument from the
physics of electroweak symmetry breaking that predicts the existence of
dark matter. As I discussed at the beginning of these lectures, models
that explain electroweak symmetry breaking are complex. They typically
involve many new particles. It is easily arranged that the lightest of the
new particles is neutral. In supersymmetry, there is a reason why the new
particles are likely to carry a conserved quantum number (11.149). Other
models of electroweak symmetry breaking, such as the extra dimensional
and little Higgs models discussed in Section 1.2, have their own reasons
to have a complex particle spectrum and discrete symmetries. Then these
models lead in their own ways to WIMPs at the hundred GeV mass scale.

A slight extension of this argument adds more interest. In supersymme-
try, the sector of new particles includes particles with QCD color. Since the
top quark probably plays an essential role in the mechanism of electroweak
symmetry breaking, it is very likely that, in any model, some of the new
particles will carry color. If these particles have masses below 1 TeV, they
have large (10 pb) pair-production cross sections at the LHC. These parti-
cles will then decay to the dark matter particle, producting complex events
with several hard jets and missing transverse momentum. These mild as-
sumptions thus lead to the conclusion, from any model that follows this
general line of argument, that we should expect exotic events with multiple
jets and missing transverse momentum to appear with pb cross sections at
the LHC.

11.6.4. Dark Matter Annihilation in the MSSM

This argument of the previous section gives a very optimistic conclusion
for the discovery of new physics at the LHC. However, we have already
discussed that the first observation of supersymmetry or another model of
new physics will only be the first step in a lengthy experimental program.
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Once we know that superparticles or other new particles exist, we will need
to study them in detail to learn their detailed interactions and, eventually,
to work out the underlying Lagrangian that governs their behavior. As we
have already discussed in Section 3.5 and 4.3, this Lagrangian can give us
a clue to the nature of the ultimate theory at very short distances.

The study of dark matter intersects this program in an interesting way.
In principle, once we have discovered supersymmetric particles, we can try
to measure their properties and see if these coincide with the properties
required from astrophysical detections of dark matter. As we have seen in
Section 5.3, the LHC experiments expect to measure the mass of the LSP
to about 10% accuracy. These measurements can hopefully be compared
to mass measurements at the 20% level that can be expected from astro-
physical dark matter detection experiments [103,104]. We would also wish
to find out whether the annihilation cross section 〈σv〉 that is predicted
from the supersymmetry parameters measured at colliders agrees with the
value (11.249) required to predict the observed WIMP relic density. This
comparison turns out to depend in a complex way on the parameters of the
underlying supersymmetry theory.

To begin our discussion of the annihilation cross section, we can make
a simple model of neutralino annihilation and see how well it works. We
have seen in Section 4.3 that the right-handed sleptons are often the light-
est charged particles in the supersymmetry spectrum. Consider, then, an
idealized parameter set in which the neutralino is a pure bino and pair anni-
hilation is dominated by the slepton exchange diagrams shown in Fig. 11.31.
(Away from the pure bino case, there are also s-channel diagrams with Z0,
h0, H0, A0.) In this special limit, the annihilation cross section is given by

v
dσ

d cos θ
= πα2m2

N

∣∣∣∣ 1
cw

∣∣∣∣2
∣∣∣∣∣ 1
m2è− t

− 1
m2è− u

∣∣∣∣∣
2

, (11.251)

where mN is the Ñ1 mass. The relative velocity v appears due to the flux
factor in the cross section; this factor cancels in σv. I have ignored the
lepton masses. This expression is of the order of (11.250) with M ∼ mN ,
except for one unfortunate feature: At threshold, t = u and the cross section
vanishes. This leads to a severe suppression, by a factor of

v2 ·

∣∣∣∣∣ m2
N

m2è +m2
N

∣∣∣∣∣
4

, (11.252)

which is at least of order ξf/16. So the relic density estimated in this simple
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way is too large by about a factor of 10.
There is an interesting physics explanation for the vanishing of this

cross section at threshold [105]. Neutralinos are spin- 1
2 fermions, and we

might guess from this that, near threshold, they would annihilate in the S-
wave either in a spin 0 or in a spin 1 state. The two spin configurations are
shown in Fig. 11.32. However, because the neutralino is a Majorana fermion
and therefore its own antiparticle, an S-wave state of two neutralinos must
be antisymmetric in spin. Hence, the spin 1 S-wave state does not exist
However, as we know from pion decay, a spin 0 state can convert to a pair
of light leptons only with a helicity flip. Thus, there is an annihilation cross
section from the spin 0 S-wave only when lepton masses are included, and
even then with the suppression factor m2

`/m
2
N , which is 10−4 even for τ+τ−

final states.
To obtain a realistic value for the neutralino relic density, we have to

bring in more complicated mechanisms of neutralino annihilation. These
mechanisms are not difficult to find in various regions of the large super-
symmetry paramet er space [106–108]. We need to look for annihilation
processes that can proceed in the S-wave with full strength. Three possible
mechanisms are shown in Fig. 11.33.

Pairs of neutralinos can annihilate in the S-wave into vector bosons.
The bino does not couple to W or Z pairs, but if the lightest neutralino has
Higgsino or wino content, this reaction can be important. For charginos
of mass about 200 GeV, this annihilation cross section can be 50 pb for a
pure wino or Higgsino, so only a modest content of these states is needed
to give a cross section of 1 pb.

The s-channel exchange of a Higgs boson can provide a mechanism for
neutralino annihilation in the spin 0 S-wave. Because this state is CP-odd,
it is the boson A0 that is relevant here. If mA is close to the neutralino
threshold 2mN , the cross section has a resonant enhancement. Note that
the Ñ1 annihilation vertex to A arises as a Higgs-Higgsino-gaugino Yukawa
term, so this vertex is nonzero only if Ñ1 has both gaugino and Higgsino
content. If mA = 2mN , the resonance enhancement is at full strength and
the cross section can be as large as 50 pb. Thus, it is A boson masses
about 20 GeV above or below the threshold that give the desired cross
section (11.249).

The final mechanism shown in the figure is coannihilation. As we have
discussed, the freezeout of the Ñ1 occurs at a temperature given by T/mN ∼
1/25. So if there is another particle in the supersymmetry spectrum that
is within 4% of the Ñ1 mass, this state will have a number density that
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remains in equilibrium with the number density of the Ñ1. If this particle
has S-wave annihilation reactions, those reactions can be the dominant
mechanisms for the annihilation of supersymmetric particles. For a light
slepton, the reactions˜̀− + Ñ0

1 → `− + γ , ˜̀− + ˜̀− → `− + `− (11.253)

can give significant S-wave annihilation. In [106,109], the lighter stau is
invoked as the coannihilating particle. In [110], the lighter top squark is
invoked as the coannihilating state. If the lightest neutralinos and charginos
are Higgsino-like, chargino coannihilation can also be important.

It is, then, a complex matter to predict the neutralino relic density
from microscopic physics. We will first need to learn what particles in the
supersymmetry spectrum play the dominant role as particle exchanged in
annihilation reactions or as coannihilating species. We will then need to
measure the couplings and mixing angles of the important particles, since
the dominant annihilation diagrams depend sensitively on these.

Some examples of how measurements at the LHC and ILC can accu-
mulate the relevant information are described in [111]. Figure 11.34 shows
a part of the analysis of this paper for a particular SUSY model in which
the dominant annihilation reactions are Ñ1Ñ1 →W+W−, Z0Z0. As a first
step, the authors constructed numerous supersymmetry parameter sets that
were consistent with the mass spectrum of this model as it would be mea-
sured at the LHC. These parameter sets included a variety of models in
which the LSP was dominantly bino and wino. The figure shows scat-
ter plots of the predictions of these models with ILC cross sections for
neutralino and chargino pair production on the vertical axis and ΩN on
the horizontal axis. The two cross sections clearly separate the bino- and
wino-like solutions. The second of these cross sections is the polarized reac-
tion of chargino pair production for which the cross section is displayed in
Fig. 11.19. The horizontal lines represent the accuracy of the measurements
of these cross sections expected at the ILC. These measurements select the
bino solution and also play an important role in fixing the bino-Higgsino
mixing angle which is a crucial input to the annihilation cross sections. In
Fig. 11.35, I show the distribution of predictions for ΩN expected for this
model, in the analysis of [111], from the data on SUSY particles that would
be obtained from the LHC, from the ILC at a center-of-mass energy of 500
GeV, and from the ILC at a center-of-mass energy of 1000 GeV.

The similar summary plot for another of the models considered in [111]
is shown in Fig. 11.36. The model considered in this analysis is one in



March 24, 2008 11:31 World Scientific Review Volume - 9in x 6in peskin˙ws

Supersymmetry in Elementary Particle Physics 707

which the neutralino relic density is set by stau coannihilation. In this
model, the stau would be discovered at the LHC, and the stau-neutralino
mass difference would be measured to about 10% accuracy at the 500 GeV
ILC. However, the annihilation reactions also depend on mixing angles and
on the value of tanβ. In this scenario, these are determined only by ILC
measurements of some of the heavier states of the SUSY spectrum.

Collider measurements of the SUSY spectrum can also be used to con-
strain cross sections of the WIMP that are important for experiments that
seek to detect dark matter, for example, the neutralino-proton cross sec-
tion and the cross section for neutralino pair annihilation to gamma rays.
If we can accurately predict these cross sections from collider data, the in-
formation about the SUSY spectrum that we learn from colliders will feed
back into the astrophysics of dark matter. Some numerical examples that
illustrate this are presented in [111].

11.7. Conclusions

In these lectures, I have given an overview of supersymmetry and its ap-
plication to elementary particle physics. In the early sections of this review,
I presented the formalism of SUSY and explained the rules for constructing
supersymmetric Lagrangians. Our discussion then became more concrete,
focusing on the mass spectrum of the MSSM and the properties of the
particle states of the MSSM spectrum. This led us to a discussion of the
experimental probes of this spectrum and the possibility of measurement
of the parameters of the supersymmetric Lagrangian.

This possibility is now coming very near. As I have discussed in the last
sections of this review, supersymmetry gives concrete answers to the major
questions about elementary particle physics that we expect to be addressed
at the hundred GeV scale—the questions of the origin of electroweak sym-
metry breaking and the identity of cosmic dark matter. In the next year,
the LHC will begin to explore the physics of this mass scale. Supersym-
metry is one candidate for what will be found. I hope that, after studying
these lectures, you will agree that the picture provided by supersymmetry
is highly plausible and even compelling.

Whatever explanations we will learn from the LHC data, our investiga-
tion of it will follow the general paradigm that I have described here. In
successive stages, we will use data from the LHC and the ILC to learn the
mass spectrum of new particles that are revealed at the LHC, to determine
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their quantum numbers and couplings, and to reconstruct their underlying
Lagrangian. On the basis of the detailed studies of this program that have
been carried out for the MSSM, we have the expectation that we will be able
to learn the underlying theory of the new particles and to test the specific
explanations that this theory gives for the mysteries of the fundamental
interactions.

Is supersymmetry just an attractive theory, or is it a part of the true
description of elementary particles? We are about to find out.
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Fig. 11.25.: Distribution of the dilepton invariant mass in two supersymmetry
models with 3-body neutralino decays: (a.) a model with gaugino-like neutrali-
nos [72], (b.) a model with Higgsino-like neutralinos [73]. In the second figure,
the dashed curve indicates the m(`+`−) spectrum expected for gaugino-like neu-
tralinos with the same mass splitting.
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Fig. 11.26.: Reconstruction of a squark in the model of Fig. 11.25(a) by combining

a dilepton pair at the endpoint of the m(`+`−) distribution, the eN0
1 in the same

frame with mass determined from kinematics, and a b-tagged quark jet.
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Fig. 11.27.: Dilepton mass distribution in a model with two-body eN2 decays,
from [63]. The left-hand plot shows the dilepton mass distributions for opposite-
sign same-flavor dileptons (solid) and for opposite-sign opposite-flavor dileptons
(dashed). The lower histograms give the estimates of the Standard Model back-
ground. The right-hand plot shows the difference of the two distributions.

Fig. 11.28.: Distributions of mass combinations of leptons and high-pT jets show-
ing kinematic endpoints in the analysis of [76]: (a.) the higher m(q`) combination;
(b.) the m(q`+`−) distribution.
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Fig. 11.29.: The dijet mass distribution for 2 b-tagged jets at a point in the SUSY
parameter space where the decay eN0

2 → h0 eN0
1 is dominant, from [67].

Fig. 11.30.: Diagram contributing a term to the renormalization group equation
for the soft mass parameter of et proportional to the soft mass parameter for Hu.
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Fig. 11.31.: Diagrams giving the simplest scheme of neutralino pair annihilation,
leading to the annihilation cross section (11.251).

Fig. 11.32.: Two possible spin configurations for neutralino annihilation: (a.)
spin 0; (b.) spin 1. Because of Fermi statistics, the latter state does not exist in
the S-wave.

Fig. 11.33.: Three mechanisms for obtaining a sufficiently large annihilation cross
section to give the observed density of neutralino dark matter: (a.) gaugino-
Higgsino mixing, opening the annihilation channels to W+W− and Z0Z0, (b.)
resonance annihilation through the Higgs boson A0, (c.) co-annihilation with

another supersymmetric particle, here taken to be a è.
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Fig. 11.34.: Scatter plot of SUSY parameter points consistent with data from the
LHC in the analysis of the parameter set LCC2 from [111]. The horizontal axis
show the value of ΩN at each parameter point. The vertical axes show polarized-
beam cross sections measurable at the ILC, in fb: (a.) σ(e−Re+

L → eC+
1

eC−
1 ), (b.)

σ(e−Re+
L → eN0

2
eN0

3 ). The colored bands show the ±1σ region allowed after the
ILC cross section measurements.
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Fig. 11.35.: Summary plot for the prediction of ΩN from collider data for the
SUSY parameter set LCC2 considered in [111]. The three curves show the like-
lihood distributions for the prediction of ΩN using data from the LHC, the ILC
at 500 GeV, and the ILC at 1000 GeV.
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Fig. 11.36.: Summary plot for the prediction of ΩN from collider data for the
SUSY parameter set LCC3 of [111]. The notation is as in Fig. 11.35.


